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1. Radio Transients

The radio sky is far from unchanging. Time-varying radiorses such as some stars (Guidel,
2002), pulsars (Archibald et al., 2009), microquasars l@vliJones et al., 2009), and AGNs (e.g.,
Aller et al., 1992) — the latter making up almost all of the mm@ms$ seen in imaging surveys above
a few mJy at 1.4 GHz (Seymour et al., 2008) — are seen to chanigeghtness over a range of
timescales. These are typically rotating sources, or ssungth variable accretion rates or mag-
netic fields. Transient sources (i. e., those with no debéetguiescent radio counterpart) typically
have explosive progenitors, such as gamma ray bursts @rail, 2000) and radio supernovae
(Brunthaler et al., 2009) — where the progenitor is destioyer flares from a variety of objects,
which may or may not also show up as variable sources durgigrtiore quiescent periods. Flares
are seen from AGNs (Falcke et al., 1999), M-dwarfs (Jack$@h €1989), brown dwarfs (Berger
et al., 2001; Hallinan et al., 2007), pulsars (Cognard et1896), and rotating radio transients
(RRATs; McLaughlin et al., 2006), among other classes oéctbj

Sometimes transient radio sources are seen but the progeamhains unidentified in deep
imaging at other wavelengths. Bower et al. (2007) studieg@epdmage from 944 epochs of a
VLA archival field at 5 and 8.4 GHz, spanning 22 years with aqueof 7 days. They detected ten
transient sources at flux densitiss2 mJy, eight of which were seen only in a single epoch. No
counterparts were seen for six transients in deep optichirdrared imaging, and their progenitors
remain unknown. Similarly, Matsumura et al. (2009) repb# tetection of nine transients with
much larger flux densities 1 Jy) in drift scanning observations at 1.4 GHz with the Nasls&
Observatory, but with no counterparts at other wavelenggsh sources may perhaps be flares
from isolated old neutron stars (Ofek et al., 2010) or mayimething more exotic.

2. The Allen Telescope Array

The Allen Telescope Array (ATA), a joint project of the Radigtronomy Laboratory of the
University of California, Berkeley, and the SETI Instituite Mountain View, CA, is a telescope
optimized for high throughput, and so it can scan large apéagy to faint flux density limits in
a short amount of time. This makes it an ideal instrument ok limr time-varying and variable
sources, because the high cadences permitted by the fgdedesign enable frequent visits to the
same large area of sky to look for changes. The 42 small digeeh 6 m in diameter) have a
field of view of 5 square degrees at 1.4 GHz, much larger thavény Large Array, although with
poorer resolution (2« 4') at this frequency.

The relatively small volumes of data produced by the previgeneration of radio telescopes
meant that flagging RFI, calibration, and imaging, couldoadictically be performed interactively.
This becomes impractical for the next generation of radestmpes, and automated routines are
required to get the best results. Correlator data taken th&hATA are typically reduced using
a custom suite of scripts programmed by Garrett Keating knass RAPID (Rapid Automated
Processing and Imaging of Data; Keating et al., 2009). RA&iDsists of csh scripts — work is
underway to port these scripts to Ruby — that call MIRIAD (Batal., 1995) tasks. It performs
identification and excision of RFI by looking for channelsigihdeviate from long term aver-
ages (Fig. 1). It calibrates the visibilities using a prignelux calibrator, and images the individual
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pointings. It then performs phase self-calibration andldgoge flagging, as well as identifying and
flagging antennas and baselines which do not converge tocgmotion. Imaging is performed

using an “intelligent CLEAN" algorithm which iterativelycreases the CLEAN depth until a max-
imum dynamic range is reached. With very little additionaftan interaction, RAPID is capable
of making good quality images from raw ATA data.

RFl counts

800

Channel Number

Figure 1. Screenshot from the RAPID RFI flagging program, showing RBEtigics as a function of
channel. Channels with large numbers of deviant data pametflagged as likely RFI.

Mosaicking, catalog creation, and matching to legacy sianare performed by additional
custom-written scripts known as “SLOW” (Source Locator @wtburst Watcher) which create
mosaic images, keeping only regions where good data exadt epochs. SLOW uses SFIND in
MIRIAD to generate catalogs, matching these across epauthscathe NRAO VLA Sky Survey
(NVSS). The matched catalog is stored in an SQL database WSti®ates postage stamps and
light curves for all sources detected, and by querying ttheldse, catalog information, postage
stamps and light curves can be displayed in a web browsehdosdlected sample.

3. The ATA Twenty-centimeter Survey

To verify the performance of the ATA during commissioning @mparison to existing sky
survey data), as well as to search for time-varying and ieahsources, we undertook the ATA
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Twenty-centimeter Survey (ATATS). The survey was desigioecbver large areas«(690 square
degrees) at a comparatively low sensitivity. We observeditid 12 times over a period of three
months, and produced a deep map using data from all epochsllaas individual maps at each
epoch. We present many more details of ATATS, as well astseoin the comparison of the deep
field with NVSS, in our recent paper, Croft et al. (2010). Arsid of epoch-to-epoch variations in
ATATS will be presented in Croft et al. (2010b).

The deep map (using data from all epochs) has RMS noise 3@&4eaht?, and dynamic
range 1050, with a circular beam of 75BWHM. It contains 4408 sources to a limiting sensitivity
of 50 = 20 mJy beam®. A map of the deep field is shown in Fig. 2, and a section of ithMVSS
sources overplotted for comparison, is shown in Fig. 3.

We compare the flux density of the sources from the deep ATAI&@g with the sum of flux
densities of all NVSS sources within76f each ATATS position in Fig. 4. Overall, the agreement
is good — a least squares fit has a gradient.60&+ 0.003 and an intercept of.3+ 0.5 mJy.
Some of the scatter around the 1:1 line is due to uncertaiirtithe measurements of flux densities
in both ATATS and NVSS, and some is due to intrinsic vari&pilnh the sources themselves over
the~ 15 years between the NVSS and ATATS observations

We can assess the completeness and reliability of ATATS obffipd the flux density distri-
bution of our catalogs and comparing to the NVSS for the sarea af sky, as in Fig. 5. The
two histograms are consistent, within the errors, untilAMATS counts turn over between 40 and
80 mJy. The ATATS histogram is marginally higher than thatN&/SS for the bins between 320
and 1280 mJy, and marginally lower for the bins between 401&@dnJy (above the points where
the source counts turn over). This is to be expected sinc@dbeer resolution of ATATS will
tend to combine the flux of multi-component NVSS sources agingle brighter ATATS source,
and occasionally to detect extended flux resolved out by N8BS ratio of the ATATS to NVSS
histograms can also be interpreted as the efficiency witlclwvivie would detect transient sources
of a given brightness, or as a measure of the survey complktenNe plot the ratio of the two
histograms, which we denof@ in Fig. 5. ATATS is> 90% complete down to around 40 mJy,
or approximately 10 times the RMS noise, below which the detepess falls off rapidly. The
shift of some sources into higher flux bins due to the resmhuthismatch results in some bins with
computedC > 1.

We plot the ATATS flux density against the ATATS flux densityided by the sum of the flux
densities of NVSS sources within 7% Fig. 6. The scatter around the 1:1 line increases towards
fainter ATATS flux densities, suggestive of increased faazl variability for fainter sources. An
asymmetry in the point cloud can be seen, most obviously atifmsities fainter than the ATATS
completeness limit (to the left of the dotted lines in Fig. Bhis asymmetry is due to the different
resolutions and sensitivities of NVSS and ATATS. Above tbenpleteness limit the point cloud
is more symmetric about the 1:1 line, although there areratire outliers that appeared to get
brighter from NVSS to ATATS than those that appeared to getda

Of the 4408 ATATS sources, 4333 had a match in NVSS. Of their@gntpa75 sources without
an NVSS match, 39 are above 40 mJy, the ATATS 90% completdingssWe examined postage
stamp images for these 39 sources (from the ATATS mosaicrand NVSS) and concluded that
none were real transient sources. In the majority of cavesetwere sources which consisted
of multiple NVSS sources (usually as part of a double sourpeesumably a radio galaxy) which
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Figure2: The deep field image, made from a combination of all 12 epothe.solid line shows the edge
of the mosaic — note that some small regions with fewer thapazies of good data were not included in
the mosaic. The areas near 3C 295 (the large missing regtop aenter) and 3C 286 (the notch cut into
the lower right edge) are notable examples, but there aceaafew smaller regions missing, where4
epochs were unusable due to RFI or some other problem. Tlisagde runs from 11.82 mJy beafn(30)

to 118.2 mJy beamt(300).

were not successfully deblended by ATATS. Examples of sditteese sources are shown in Fig. 7.
Similarly, 61 sources appeared to have varied by a factoroofr@ore, but had complex morpholo-

gies making it likely that the differing survey resolutioasd sensitivities were responsible for the
apparent variation. There were six sources which appeamgact and isolated as well as having
varied by a factor of two or more. Examples of these sourceslap shown in Fig. 7.

We can use the lack of transients seen when comparing ATAINY &S to place constraints on
the population of transient sources brighter tha#hi0 mJy. Fig. 8 shows the constraints on transient
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Figure 3: A 25 square degree region of the deep field shown in Fig. 2, shatwa larger scale and
slightly different stretch so that the structure of indivéd sources may be seen. All sources with NVSS
flux densities brighter than 20 mJy (corresponding to 5 tinhesRMS of the ATATS image) are plotted
as circles; the size of the circle is proportional to the NfB® density. The greyscale runs from zero to
118.2mJy beam(300). The faintest NVSS sources are below the ATATS completehiest. Hence the
fraction of NVSS sources without a counterpart in the ATAESatog increases with decreasing circle size
in this image.

rates from some surveys from the literature, compared ta@ohstraint from the comparison of
ATATS and NVSS. It is hard to reconcile the steeply fallingise counts suggested by the Gal-
Yam et al. (2006) and ATATS results with the detections ofa@sients brighter than 1 Jy reported
by Matsumura et al. (2009) unless these transients make iffiei@dt population with a very steep
cutoff below 1Jy. The ATATS @ upper limit is marginally consistent with the M09 resultoab
1Jy, but if the Matsumura et al. transients have flat or risiogrce counts towards fluxes1 Jy
we would expect to see them in ATATS.

Some transients may be too faint to show up in the map madedeienfrom all epochs, but
nevertheless be visible in individual epochs. To study ssailrces, as well as the variability of
all sources from epoch to epoch, we are examining light cuarel postage stamps, as shown in
Fig. 9 — the results from this analysis will be discussed ioftat al. (2010b).
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Figure4: Comparison of the flux densities of sources from the ATAT Qlcat, with the sum of fluxes of
all NVSS sources within 750f the ATATS positions.

4. Futureplans

Future plans call for an expansion of the ATA from 42 to 35@angs, considerably increasing
its survey speed. The ATA team is working in partnership wittier SKA pathfinders, including
LOFAR, and welcomes approaches from other parties intastcollaborating on science using
the ATA, on simultaneous campaigns with other instrumesmsl, in building the support and in-
frastructure necessary as we transition from telescopigdsvis of elements to those with hundreds
or thousands.
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