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While studies of galaxy evolution generally focus on extensive HI surveys at large redshifts, we
argue in this paper that the understanding ofdetailed physical processes that drive HI evolution
in galaxies is equally important. Specifically, we focus on three open questions regarding the
very first step in the star-formation cycle in galaxies: How much galaxy halos flavor and tax the
accretion flows that are postulated to bring fresh star-formation fuel to galaxy disks? What are
the basic properties of the warm neutral gas, the progenitorof cold star-forming clouds? What
are the origin and level of interstellar inhomogeneities asseeding agents for molecule and star
formation? The very local Universe (The Milky Way and nearbygalaxies) offers an unparal-
leled high-resolution view for answering these questions and the upcoming radio telescopes (e.g.
EVLA, ASKAP, MeerKAT, ATA-256) promise great advances.
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Figure 1: Schematic summary of our current understanding of the star-formation cycle in galaxies. Credit:
Bill Saxton (NRAO)

1. Introduction

In our current understanding of the star formation cycle in galaxies (illustrated in Figure 1),
diffuse interstellar gas transforms first into dense cold clouds, which further fragment and produce
stellar and planetary systems. Throughout their lifetime and particularly at the end, stars greatly
affect the surrounding medium through stellar winds and supernovae stirring and structuring the
diffuse gas and affecting the next generation of star formation. While other components of this
cycle have received significant attention, the first step, orthe conversion of diffuse interstellar
gas into dense cold (molecular) clouds, is largely unexplored despite the fact that it has long-
reaching manifestations. For example, the outstanding “missing satellite problem" whereby galaxy
formation models over-predict the number of low-mass dark matter halos, stems from our limited
understanding of the physical processes (and their efficiencies) involved in the molecular cloud and
star formation (Putman et al. 2009).

Furthermore, recent cosmological simulations suggest an even higher complexity of the star-
formation cycle by introducing one additional step: the accretion of the initial star formation fuel
(Kereš et al. 2005). Even at the present time, a large fraction of the multi-phase diffuse gas in
galaxies is expected to be accreted from cosmic filaments andsatellite galaxies enabling a healthy
star formation rate. However, this process is not passive and the interplay between the inflowing
material and the host galaxy leaves a strong, multi-phase mark on the accreted gas. In the case of
a Milky Way (MW) type galaxy, Brooks et al. (2009) show that about 60-70% of the inflowing
gas is shock-heated to near virial temperatures ofT ∼ 106 K , while about 30-40% is accreted
at lower temperatures of T< few ×105 K through both cold accretion (from cosmic filaments)
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and accretion from previous mergers and satellites (‘clumpy’ component). The unshocked and
‘clumpy’ components in particular play an important role for building up the disk as the cold gas is
delivered close to the disk and goes on to form stars faster than the shocked gas, which must cool
before supporting star formation.

The star formation cycle provides chemical and energy enrichment and directly affects how
galaxies age and evolve with time. Therefore, to make advances in our understanding of galaxy
evolution, we need to start with the necessary first step: thediffuse interstellar gas. We focus here
on three scientific questions concerning the diffuse interstellar gas where the upcoming radio tele-
scopes promise great advances: (i) what are the nature and fate of the accreted star formation fuel;
(ii) what are the physical conditions required for cycling of interstellar phases; and (ii) what is the
origin and nature of interstellar inhomogeneities as seedsfor molecule (and later star) formation?

2. The Magellanic Stream as a template fordetailed physics of accretion flows

We are fortunate that the Magellanic Stream (MS) offers a nearby example of a gaseous rem-
nant from interactions between the Magellanic Clouds (MCs;the Large Magellanic Cloud, LMC,
and the Small Magellanic Cloud, SMC) and the Milky Way (MW). This feature, which extends
in an arc nearly half way across the sky, offers a unique, close-by laboratory to study physical
processes of accretion flows in the MW halo.

The MS is a huge (> 100 degree long) starless neutral hydrogen (HI) structure trailing behind
the MCs. After decades of studies, numerous puzzles remain regarding the formation and evolution
of the MS gas (a recent summary is provided in Stanimirovic etal. 2010). Two most recent
observational surprises are: (i) the present-day MS is at least 40% longer, and∼ 10% more massive,
relative to the MS we knew about a few years ago (Braun & Thilker 2004, Stanimirovíc et al. 2008,
Nidever et al. 2010); and, (ii) the MS has a significant abundance of small-scale structure.

A compilation of various HI observations of the MS is shown inFigure 2 (Nidever et al.
2010, in preparation) and includes recent Arecibo HI observations from the GALFA-HI survey
(Stanimirovic et al. 2006, Peek & Heiles 2008) focusing on the MS tip. The GALFA-HI survey
has been mapping the entire Arecibo sky at a velocity resolution of 0.18 km s−1and an angular
resolution of 3.5 arcmin, operating mainly commensally with other surveys undertaken with the
Arecibo L-Band Feed Array. The complex small-scale morphology of the HI gas, revealed for the
first time down to an angular size of∼ 3.5 arcmin, indicates that processes are clearly at work in
the MW halo on scales of tens of parsecs and at a distance of> 60 kpc. These processes affect the
MS’s potential for star formation, the transfer of gas from the MS to the halo, and also may provide
additional drag affecting the global MS dynamics. Althoughthese processes play a crucial role
for gas evolution of the MS (Murray et al. 1993; Bland-Hawthorn et al. 2007; Heitsch & Putman
2009), it is still not clear exactly how they operate, and on what timescales. As global numerical
simulations rarely have resolution necessary to resolve such small scales, observational constraints
of the effectiveness of various hydrodynamical instabilities are needed.

Analytical considerations of timescales (Mori & Burkert 2001, Quilis & Moore 2001, Stan-
imirovic et al. 2008) as well as recent numerical advances (Bland-Hawthorn et al. 2007, Heitsch &
Putman 2009), suggest that thermal and Kelvin-Helmholz instabilities operate on timescales much
shorter than the MS formation time and hence must be important. This, together with large-scale
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Figure 2: The compilation of HI observations of the Magellanic Streamby David Nidever superimposed on
an all-sky image of the MW in visible light by Axel Mellinger.Credit: Astronomy picture of the day.

shearing due to tidal interactions in the MW-MCs system, results in an expectation of a highly
turbulent environment. Yet, the physical properties of theMS gas revealed by the high-resolution
observations indicate stability and longevity of HI clouds. For example, cool HI cores subsonically
moving within warmer HI envelopes have been found along the MS (Karberla & Haud 2006, Sta-
nimirovic et al. 2008). The coldest (T ∼ 70 K) pockets of HI have been recently revealed through
absorption observations by Matthews et al. (2009). Diffuseionized gas withT ∼ 104−4.5 K, further
enveloping the HI component, has been studied with SiIII observations by Shull et al. (2009). An
even hotter component withT ∼ 105 K, observed through OVI absorption lines, has been inter-
preted as tracing the interface between the cool MS gas and the hot MW halo (T ∼ 106 K). From
this work, a picture emerges of cold MS cores shielded from the T ∼ 106 K MW halo by many
layers of a multi-phase warm gas.

Further, the direct comparison between the observed HI column density probability density
function (PDF) and the latest simulated distributions reveals significant differences. As a demon-
stration, we use here data from the Bland-Hawthorn et al. (2007) shock-cascade model of the MS,
which starts with an initially clumpy HI distribution of theMS gas and allows for strong inter-
actions between the MS clouds and the MW halo. As the MS cloudsupstream experience gas
ablation by the oncoming hot MW halo, the ablated gas is slowed down and further collides with
the clouds downstream, resulting in shock ionization of HI clouds. This shock-cascade model can
explain measured Hα intensities along the MS (Bland-Hawthorn et al. 2007). It also predicts large
changes in the HI distribution on timescales of 100-200 Myrscaused by the ablation process.

In Figure 3 we compare the observed HI column density PDF for the MS tip (from Stan-
imirovic et al. 2008) with the same quantity at two snap-shots in the Bland-Hawthorn et al.’s simu-
lation: 70 and 270 Myrs after the initial exposure of the MS tothe halo wind (shown as dashed and
dot-dashed lines in Figure 3). The large difference in the simulated data after 200 Myrs is clearly
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Figure 3: Evolution of the HI column density probability density function in the shock-cascade simulation
by Bland-Hawthorn et al. (2007). The blue dot-dashed and green dashed lines shows times stamps in the
simulation at 70 and 270 Myrs, respectively. The solid line shows the HI column density PDF derived by
using observations from Stanimirovic et al. (2008). The observed PDF was divided by 5 to account because
observations sample five times larger projected area than the simulation.

visible, and the later distribution is missing both low- andhigh-density gas. However, the observed
PDF is not similar to any of the simulated PDFs. Contrary to a highly asymmetric simulated N(HI)
PDF, the observed PDF is highly symmetric and almost Gaussian. It clearly contains more low- and
high-density gas than the end point of the simulation. As shown in Burkhart et al. (2010), subsonic
turbulence produces Gaussian column density distributions, while supersonic turbulence produces
highly skewed PDFs. This highlights the difference betweenobservations and the simulation: sim-
ulated distributions appear highly turbulent due to fast ablation processes. As a result, the neutral
gas is relatively quickly shredded and turned into an ionized warm drizzle, which eventually infalls
onto the MW disk.

The structure of the boundary between clouds and the hot atmosphere of the MW is one factor
that could slow down the rate of mass ablation in the MS through heat conduction (e.g. Vieser &
Hensler 2007). To study these boundary regions along the MS,and also other tidal tails, we need
large-area observations with both high angular resolutionand excellent sensitivity. Several upcom-
ing radio telescopes will provide exactly that (e.g. ASKAP,MeerKAT, ATA-256). In particular,
the Galactic spectral line survey with the Australian Square Kilometre Array Pathfinder (GASKAP,
Dickey et al. 2010), one of several survey science projects accepted for ASKAP, will image the MS
at an angular resolution of∼ 1 arcmin. We will be able to study the “aging” processes of theHI gas
injected into the vicinities of galaxies by interactions orother cosmologically related processes.
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Figure 4: Histogram of the WNM kinetic temperature in the case of no non-thermal motions. From Figure
2 in Heiles & Troland (2003).

3. What are the physical conditions required for cycling of interstellar phases?

The accretion flows bring fresh star formation fuel to galaxies in various flavors of diffuse gas
which is likely to get integrated with the diffuse interstellar medium (ISM) in the disk. Again, our
home neighborhood (the MW disk) offers a high-resolution view of the crucial physical processes
responsible for cycling of interstellar gas across varioustemperature regimes on the way to cold
dense clouds, which are considered to be precursors of molecular, star-forming entities.

Traditionally, the diffuse neutral ISM is known to exist in two thermal equilibrium states:
the cold neutral medium (CNM) and the warm neutral medium (WNM; McKee & Ostriker 1977;
Wolfire et al. 2003). While the CNM properties have been measured extensively, surprisingly
only three direct measurements of the WNM temperature exist thus far. The main reason for this
observational paucity is the low optical depth of the WNM,τ

∼
< 10−3, which creates a need for

very sensitive radio instruments. Properties of the WNM aretraditionally indirectly inferred only
through HI emission line profiles. Out of all ISM phases, the WNM is the least understood, yet it
seems to hold the key to constraining ISM models and the formation of cold interstellar clouds.

One of the key observables that theoretical and numerical models of the ISM attempt to pre-
dict is the gas fraction as a function of temperature. McKee &Ostriker (1977) and Wolfire et al.
(2003) predict that cold gas should dominate, while its enveloping counterpart–the WNM–should
be mainly in thermal equilibrium and comprise only a few percent of the total diffuse interstellar
gas. More recent ISM models emphasize the highly dynamic andturbulent character of the ISM
and the consequences this can have on cold cloud formation. For example, in Audit & Hennebelle
(2005)’s simulation of a collision of incoming turbulent flows a fast condensation of WNM into
cold neutral clouds is initiated. The fraction of cold gas iscontrolled by turbulence, and ranges
from 10% in a strong turbulent case to about 30% in a weak turbulent case. Mac Low et al.
(2005) simulate how shocks driven into warm, magnetized, and turbulent gas by supernova explo-
sions create dense, cold clouds. They find a continuum of gas temperatures, with a fraction of the
thermally-unstable WNM (T < 5000 K) being constrained by the star formation rate.

One of the observational studies that has had a large impact on recent ISM simulations is the
“Arecibo Millennium" survey of the 21-cm line absorption byHeiles & Troland (2003, HT03).
They found that a substantial fraction (48%) of the WNM is in the thermally unstable phase, with
kinetic temperatures in the range of 500−5000 K. Yet, we must emphasize that HT03 did not mea-
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Figure 5: The HI absorption spectrum (bottom) from our EVLA pilot observations (Begum et al., sub-
mitted). The corresponding HI emission was obtained with the Arecibo radio telescope (top panel). The
absorption spectrum was fit with three CNM Gaussian functions, shown with the dashed line. The emission
spectrum was fit with a combination of the CNM (dashed) and theWNM (dotted line) components.

sure the WNM directly, but inferred its temperature mainly through observed narrow HI emission
lines (Figure 4). Two out of three direct measurements of theWNM spin temperature (Carilli et al.
1998, Dwarakanath et al. 2002, Kanekar et al. 2003) also findT ∼ 3000−4000 K and support the
HT03 results.

To explore possibilities for sensitive HI absorption measurements with the Expanded Very
Large Array (EVLA), we have recently obtained deep HI absorption spectra against several contin-
uum sources along the lines of sight which have indicated theexistence of the thermally-unstable
WNM with T < 5000 K (Begum et al. 2010). As an example, in the direction of source P0347
HT03 found a narrow emission feature at a velocity of 0 km s−1 without corresponding absorption
which indicated a thermally unstable WNM. Figure 5 shows ourrecent EVLA absorption spectrum
(bottom panel), together with the Arecibo HI emission spectrum (top panel), for this source: our
detection of an additional weak absorption feature at a velocity of −0.5 km s−1 results in the best-fit
solution without any need for the thermally-unstable WNM. This shows that the detection of weak
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absorption lines, which have been largely missed in shallowabsorption surveys, can significantly
affect the estimated fraction of the thermally-unstable WNM.

Clearly, large samples of very sensitive HI absorption/emission spectra are needed to charac-
terize the basic properties of the WNM: temperature, columndensity, and abundance relative to the
CNM. Current (Westerbork radio telescope and EVLA) and upcoming (ASKAP, MeerKAT, ATA-
256) radio telescopes are becoming for the first time, technically ready for such experiments. A
dedicated highly sensitive (∆τ ∼ 10−4) survey of the WNM in absorption is necessary to measure
the basic properties of the WNM and constrain possible scenarios for formation of cold clouds.

In addition, surprisingly little is known about the census and properties of cold gas even in
very nearby galaxies. As the “demography" of cold gas is driven largely by the heating and cooling
processes – which rates vary with metallicity, dust-to-gasratio, and the strength of the interstellar
radiation field – significant variations of the CNM/WNM properties and abundances are expected
from a theoretical point of view (Wolfire et al. 2003). The reality is such that, even in our home
neighborhood only a handful of measurements exists for the cold gas in the SMC and the LMC
(Dickey et al. 1994, 2000, Marx et al. 1997), typically considered as prototypes of a relatively
primitive ISM common in the early Universe. The only recent attempt to study properties of cold
gas in a lower-metallicity environment offered by the outskirts of the MW resulted in highly puz-
zling results. Dickey et al. (2009) suggest that, contrary to all theoretical predictions, the spin
temperature of the CNM is constant with Galactocentric radius all the way to 25 kpc.

To be able to study the conversion of cold gas into stars over cosmic time, we need to start by
providing the census of cold gas in nearby galaxies and its environmental dependence. GASKAP
will provide HI absorption spectra for several hundred of radio continuum sources both behind the
Magellanic Clouds and the MW disk to study spatial variations of the CNM/WNM abundance and
their correlations with the underlying physical conditions. Deeper observations over smaller areas
with MeerKAT and ATA-256 should continue this work to other nearby galaxies.

4. What is the origin and nature of interstellar inhomogeneities?

Interstellar turbulence is an important ingredient in ISM models and governs many astrophys-
ical processes, including the cycling across various gas phases, formation and evolution of ISM
inhomogeneities (McKee & Ostriker 2007), and the onset of molecule formation (Glover et al.
2010). While pinning down sources of ISM turbulence observationally has been hardly explored,
detailed numerical simulations of galaxies require inclusion of realistic ISM inhomogeneities. For
example, Governato et al. (2010) show how only after tying star formation and its feedback to
realistic highest-density regions can a sufficient removalof the angular momentum be achieved,
resulting in reasonable rotation curves.

Statistical studies have proven to be essential in characterizing the inhomogeneous and tur-
bulent ISM (Elmegreen & Scalo 2004, Lazarian 2009). However, while many statistical methods
(spatial power spectrum, wavelets, probability density functions, principal component analysis etc)
have been used, the interpretation of results is not always straightforward. The most challeng-
ing issue is the complex relationship between observables (brightness temperature in tensity as
a function of velocity, in the case of radio observations) and the underlying physical quantities
(3D density and velocity fields; Lazarian 2009). In addition, most of these statistical methods re-
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quire large datasets with a large spatial or velocity dynamic range and produce a single, mostly
one-dimensional, measure. This results in a lack of spatialinformation about turbulent properties
across a given interstellar cloud or a galaxy, making a connection with the underlying physical pro-
cesses (e.g., presence or absence of star formation, strength of magnetic field, presence of shearing
motions) very difficult.

Recently, Burkhart et al. (2010) showed that the above problems can be allevaited by using
modern simulations hand-in-hand with observations. They developed a new method to provide
spatial information about the nature and level of interstellar turbulence. This method is based on
applying high-order statistical moments to the HI column density distribution and bootstrapping
the sonic Mach number (Ms) from an extensive library of isothermal MHD simulations. Kowal
et al. (2007) used 3D isothermal simulations of MHD turbulence; their work shows that variance,
skewness, and kurtosis (the 2nd, 3rd and 4th order statistical moments, respectively) have a strong
dependence onMs. As the sonic Mach number increases, so does the Gaussian asymmetry of
the column density PDFs due to gas compression via shocks. This implies that the sonic Mach
number of turbulence in an interstellar cloud can be characterized by applying high-order statistical
moments to the observed column density distribution functions.

We demonstrated this idea on the HI column density image of the SMC (see Figure 6, left).
By using the trends provided by simulations, we converted high-order statistical images of the HI
distribution in the SMC into the sonic Mach number image shown in Figure 6. This image allowed
us, for the first time, to quantify the fraction of subsonic versus supersonic HI. We found that
∼ 80% of the HI in the SMC is subsonic or transonic withMs < 2, while∼ 10% appears quiescent
with Ms ∼ 0. Another 10% or so hasMs > 2. The highest supersonic regions, withMs ∼ 5, point
out large-scale tidal or shearing flows caused most likely bythe interactions between the SMC, the
LMC, and the MW. A confluence of observations and numerical simulations is clearly a powerful
way of connecting physical sources and processes with the ISM structure formation, which seeds
molecule and later star formation.

However, to have enough data points to reliably calculate statistical moments we essentially
had to smooth the original HI image to a resolution of 30 arcmin and were therefore not able to
reach scales of typical HII regions and/or supernovae whichare generally considered as the main
turbulence drivers (McCray & Snow 1979). The upcoming radiotelescopes will ameliorate this
problem. With an angular resolution of 10′′-20′′ provided by ASKAP we will reach linear scales of
50-100 pc (at a distance of 60 kpc) for the high-order moment maps. This will probe the supernova
origin of interstellar turbulence at the distance of Magellanic Clouds. A huge number of high-
resolution HI data cubes of the Magellanic Clouds, the MW plane (GASKAP) and other nearby
galaxies (MeerKAT), in combination with the high-order moments method, will sample variations
in the nature/level of interstellar turbulence with varying interstellar environments. In general, with
data volumes increasing by a large factor, an exploration ofnew statistical methods for the analysis
of HI data will be even more important in the future.

5. Conclusions

While significant effort in the near future will be focused ongalaxy evolution by observing
HI in galaxies at large redshifts, we argue in this paper thatthe understanding ofdetailed physical
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Figure 6: (left) The HI column density image of the SMC from Stanimirovic et al. (1999) at an angular
resolution of 98′′. (right) The sonic Mach number image derived from the HI column density image of
the SMC and overlaid with the HI column density contours (from Burkhart et al. 2010). The circle in the
bottom-left shows the angular resolution of the image,∼ 30′.

processes that drive evolution of the HI gas in galaxies is equally important. To expose processes in
question at high resolution, the nearby Universe offers an unparalleled advantage. We have focused
here on just three outstanding questions regarding the veryfirst step in the star-formation cycle in
galaxies where upcoming radio telescopes (e.g. EVLA, ASKAP, MeerKAT, ATA-256) promise
great advances.

First, nearby examples of the infalling gaseous tidal tailslike the Magellanic Stream offer a
unique window into how much galaxy halos flavor and tax the accretion flows that are postulated to
bring fresh star-formation fuel to galaxy disks. While current analytic and numerical studies sug-
gest highly turbulent environments, created by fast shredding of incoming flows by hydrodynamic
instabilities, the HI clouds in the Stream appear more quiescent with large reservoirs of low col-
umn density material that is potentially shielding them against destruction. Second, in our current
understanding of the star-formation cycle in galaxies, theWNM transforms first into the CNM,
which further reaches high enough density to form moleculesand shield them from radiation. Yet,
only three direct measurements of the WNM temperature existto date in the MW disk. The WNM
temperature is a crucial parameter for pinning down how exactly the warm-to-cold phase transfor-
mation occurs in galaxies. Similarly, very little is known observationally about the abundance of the
CNM and the CNM/WNM fraction in even nearby galaxies. Third,interstellar turbulence is a key
parameter when modeling the ISM and molecule/star formation, yet mapping out turbulent prop-
erties across various interstellar environments and connecting these variations with the underlying
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energy drivers has been hardly explored. Statistical methods based on a confluence of observations
and numerical simulations show promising results in this direction and call for higher-resolution
data cubes.

The above questions call for extensive, highly-sensitive HI emission and absorption surveys.
While deep HI emission surveys of tidal tails around galaxies (including the MW) will teach us
about physical properties of accretion flows, deep HI absorption surveys will measure the temper-
ature, abundance and interchange of the warm/cold star-formation fuel in galaxies. Recent results
from Arecibo’s GALFA-HI survey, as well as pilot EVLA observations, demonstrate a high poten-
tial of future surveys. At the same time, to analyze upcominghuge volumes of data, and to take
the data analysis to a higher level, a strong confluence of observations and numerical simulations
is becoming a necessary, not just desirable, approach.
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