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We consider a two-Higgs-doublet Model (2HDM) with a softipkenZ, symmetry where only
one of the doublets couples to fermions at tree-level. Intehd the other doublet does not
acquire a vacuum expectation value. One can view this madal generalization of the Inert
Doublet Model (IDM), which has an exaZb symmetry. In this paper, the model is presented
together with constraints from theory and the oblique p&tensSandT. Some implications for
collider phenomenology is outlined and in particular, wecdiss the charged scalar in this model.
At lowest order, the charged scalar decays into a pair ofifereproceed at one loop level. We
also consider charged scalar decays WitoZ /y which also occur at one loop level. We describe
briefly how to calculate and renormalize those processes.
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1. Generic two-Higgs-doublet model

The two-Higgs-doublet model (2HDM) provides a simple egten of the Higgs sector of
the Standard Model (SM) by the inclusion of one additioBal2), , Y = 1, complex scalar field
®(x) = (®* (x),d°(x))T. The most general renormalizable potential that can be matief dwo
such doublets which respects the electroweak gauge symisetr

Varpm = M ®] Dy + Mg, dId, — [mfzdbld)z + h-C-}

1 1
+ SM(P]O1) + SAo(PhP2)% + Aa(P]D1) (PLB) +Aa(®]P2) (P} D1)  (1.)

+ {%A5(¢I¢2)2+ M6(@[1) + Ae(P];) | (@]) + h.c.} ,
where all parameters are real, exceptXgs 7 andmé, which in general are complex-valued. We
constrain ourselves tGP-conserving Higgs sectors and all parameters are taken tedbe The
potential (1.1) is invariant under globél(2)-transformations among the Higgs-doublets. kgf
andmé, = 0 the potential (1.1) is invariant und&g-transformations of the Higgs-doublet®; —
(Dl, Oy — — Do,

The Z; breaking terms in (1.1) are?, which breaks this symmetry softly,e. the Z,-
symmetry is restored in the UV-limit, amd 7 which explicitly break this symmetry hard.

A generic basis for the vacuum expectation values (VEVstiwhespects the unbrokéh(1)gm
symmetry is(®;) = (0,vcosB)" /v/2, (®,) = (0,vsinB)T /+/2, where we have introduced t8n=
Vv2/v1 andv? = v2 +v3. The parameter tgiis not a physical parameter due to thé2) invariance
of the Higgs Lagrangian. However it will become so when coeshg fermion-Higgs interactions
which break th&J (2) invariance of the Higgs Lagrangian.

2. The Lopsided doublet model

We consider a 2HDM where thH&, symmetry is softly broken and onl@; have tree-level
fermions couplings. In addition, onl§; acquires a VEV, i.e.v = vy, thus we have a physical
realization of the so calleHliggs basis. This model can be thought of as a generalization of the
Inert Doublet Model (IDM) where thE&, symmetry is exact [1]. The minimization conditions in the
Higgs basis readsré, = —v2A;/2, m2, = v?Ag/2, giving no constraint oms,, which is therefore
a free parameter in the model. Since the gbftbreaking parametenrﬁ2 is proportional to the
hard breaking parametag, it naively seems that if soft breaking is introduced, th@imization
condition implies that hard breaking also occurs. We stelthat this is not necessarily the case.
Expanding the potential and using the minimization condgi the mass matrix for tH@P-even

states is
VA VA
2 1 6
e (D ) e

where the masses for t@P-odd scala’ and the charged scalbf™ are

Mhe = M +V2Ag/2, My =mhe — V(A5 — M) /2. (2.2)
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For non-zerd\g, theh andH will be states of indefinit&,-parity due to mixing:

H = (V2Red?—v)cosa + v2Reddsina = ¢1cosa + ¢, sina (2.3)
h = — (vV2Red? — v)sina +v2Reddcosa = — ¢, sina + ¢, cosa, (2.4)

wherea is the angle that diagonalizes the mass matrix (2.1) by doganal transformation. One

notes that ifZ, is conserved andg = 0, as in the IDM, the mass matrix is diagonal and there will

be no mixing betweerp; and@,. Thus the doublets written in mass eigenstates are

1 V2G* o, L V2H* 2.5)
v—hsina +Hcosa +iG°/* % /2 \ hcosa +Hsina +iA)’ '

whereGt,GP are the Goldstone bosons. It should be noted that since®nlycquires a VEV,

it is not approriate to callp, a Higgs doublet and the scalakdiggs bosons. We will from now

on call all the mass eigenstates in this maostglars. One should note that the limit sin— 0

restores the,-symmetry and we recover the IDM. Ti&P-even scalars are given in terms of the
Ai's according to iy > ny) :

®; =

M = macos a + VA sifa +VPAscos a —VPAgsin2ar (2.6)
Mg = masin?a +V2A1cos8 a +VPAssin?a +V2Agsin2a . (2.7)
Using these relations together with the onesmfigrandm?,. one may solve foA; 3455
A= [mE +me+ (Mg —m) /cosr — 2PAgtan 2] /22, (2.8)
Ay =2 (M —mgy) V2, (2.9)
Ag=[mg +mé — (mf —mf) /cos r + 2v2Agtan n + 2m; — 4m@. ] /22, (2.10)
As = [mE +nf — (M — ) /cos A + 2P Agtan 2r — 2m3 ] /2%, (2.11)

The mixing angle can be written as sim2= 2v2Ag/(mg — m?). In the case of maximal mixing,
sin20 = 1, the above formulas fot, 45 are not valid. The correct formulas for the couplings for
this case are found by simply omitting the factors with acess®d tan 2 in those expressions.

The free parameters of this model are chosen tonRany, ma, My+,A2, A7, sina and npo.
Using the formalism of Davidson and Haber [2] one can find ¢@mws whenZ, is only softly
broken. It then turns out that it is possible to have soft kirspeven with non-zerdg, provided
that the following conditions are fullfilled:

(A1 = A2) [A3as(A6 + A7) — A2As — AAz] — 2(A6 — A7) (A + A7)2 = O, 2.12)
(Al—)\z)m%ﬁ- ()\6+)\7)(m%1_ m%z) #0, (2.13)

whereAzss = Az + A4+ As. These conditions are valid M; £ A, in a basis wherd; = —Ag.

The fermions will acquire mass through yukawa couplingshwifite Higgs doubleth;. If
one also assigné; parities to the fermions in order to avoid flavor changingtreicurrents at
tree-level [3], one obtains for tgh=0

Mg — Mg — ,
—Zmass= TFF FH cosa — TFF Fhsina (2.14)

whereF =U,D, L.
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3. Constraints and Phenomenol ogy

Since the charged scalar and the pseudoscalar do not codpteiions at tree-level, basically
all flavor constraints and some collider constraints do mpgiya As a consequence they might
have been produced already at LEP if light enough. At thigestae first examine theoretical
constraints and constraints from the oblique param&gdrs We enforce tree-level perturbativity
and unitarity,i.e. the quartic scalar couplings should be smaller tharvé The unitarity condition
at tree level means that tf@matrix eigenvalued,; should not be greater than A6 Also the
requirement that the potential (1.1) should be stable isldtw These constraints and tBer
parameters are evaulated using the soft2dBMC [4]. The evaluate®, T parameters should fall
within 1o of figure 10.4 in [5] (reference value for Sk, = 117 GeV). We find large regions
in the parameter space which fulfill these constraints ag kmthe custodial symmetry is valid,;
My+ & Mp OF rnﬁ'i ~ Mg sirfa + m2cog a. Figure 1 displays some examples of allowed regions
in themy+, ma plane withA, = A1 andA7 = Ag in order to fulfill (2.12) and (2.13).
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Figure 1: Examples of allowed regions in tha,+, ma plane from theory an®, T parameter constraints.
The left (right) figure is fom, = 150(150) GeV, my = 250(400) GeV, sina = 1/1/2(0.3), mp = 50(100)
GeV.

4. Decays of the charged scalar

If kinematically allowed, the decayd®™ — W*S(S= h,H,A), will dominate since they are
the only occuring tree-level processes without internalppgators. The decay width is of the
order a few to ten GeV and is shown in figure 2. Also shown in #reesfigure is the decay width
for H¥ — W**Swhich can be of the order MeV and are calculated with [4]HIf — W**Sis
off-shell enough, 3-body decays might compete with 4-boelyagls and the loop-induced 2-body
decaysH* — fif;,W*z W*y.

The diagrams for the loop-induced 2-body decays can beativiigto vertex-corrections (fig-
ure 3 a,d,e) and mixing-type ones (figure 3 b,c,f). Startiriy W+ — W*Z, W*y, we follow
[6] to obtain the relevant counterterms by expanding thebtids: ®; — 1/Z ®; and their VEV's:

Vi > VZi (Vi — &), i =1,2 and ~ denotes a renormalized quantity. This expansionreis per-
formed in.Z®i,. At one-loop orderz; = 1+ 9;, Wheredy, is quadratic in the couplingg and
g.
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Figure 2: The left (right) figure show§ (H* — W*A), for on-shell (off-shellWW*. ForH* — W*h(H)
the result should scale as $m (co€ a) .

The result of the expansion is that the vertex counterteansl ¥ WTZ andH*WTy are pro-
portional to the one foH*W*-mixing, which is finite in dimensional regularization. Eity, we
have to take into accoui*G*-mixing, which is divergent. The renormalization procedys
setting the renormalizedd andH - tadpoles to zero and requiring that the real part of all reno
malized self-energies vanishes on-shelg.; Re[iHiW1(p2 =mg.)] =0. The self-energy for
H=G*-mixing is determined on-shell by the self-enefy:y= by the Slavnov-Taylor identity.

For the processl® — f;f;, only H* mixing with W* andG* requires renormalization, since
the vertex diagrams (figure 3 a) have no counterterms. A#&ronmalization, we require that
v, =0, i.e. that we are still in the Higgs basis.

The summation of all diagrams and numerical evaluationexftis performed usingor mCal ¢
and related packages [7] using an on-shell renormalizattveme. For further discussion regard-
ing renormalization conditions and results, we refer to [8]
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Figure3: Some examples of Feynman diagrams which can contribté tes f; fj, W*Z.
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5. Summary and Outlook

In this paper, we have presented a model where the chargked doas not couple to fermions
at tree-level but does so at higher orders in perturbatieorth This opens up for an interesting
collider phenomenology and we outline how to calculdte decays into two fermions. We show
that there are potentially large regions in parameter spdigeh are allowed from theoretical con-
straints and th& and T parameters. In [8] the model and constraints will be disedisa more
detail. Also, the results of the loop-calculations acconiga with 3- and 4 body decays for the
charged scalar will be presented.
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