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1. Introduction

During the last years the Landau gauge (LG) propagators in Yang-Matsyrand QCD have
attracted much interest. The extreme infrared behavior was believed tdestieconfining fea-
tures of the gluon dynamics. Despite all attempts to simulate on very large lattiegsulerlike
behavior predicted by the Gribov-Zwanziger scenario and prefésremnperturbative continuum
approaches like Schwinger-Dyson Equations [SDE] and FunctiomalfRelization Group [FRG]
(in order to guarantee an unbroken BRST symmetry) was impossible talteggrdn lattice simu-
lations [1]. Some exception are simulations in fhe- 0 limit [2]. Today the general opinion is
that the extreme infrared behavior is very sensitive to Gribov copytsffee., strongly dependent
on how the residual gauge freedom is fixed, specifying what actuatheisandau gauge under
discussion. The latter is insufficiently specified by the transversality condjg\;, = 0. Mostly
the “minimal Landau gauge” has been adopted, requiring to find the absoititmum of the so-
called gauge functional (see below). The impossibility to find it, with finite comjmutal effort,
has suggested e.g. to seek improvement applying the simulated annealintp@id8}. Other
prescriptions for the nonperturbative completion of LG have been pezbwhich select the “best
Gribov copy” directly according to properties of the gluon or ghost pgaytors [4, 5].

On the other hand, hadron physisges not depend cruciallgn the extreme infrared behav-
ior, the dichotomous “scaling” or “decoupling” form of the propagatdksfamily of decoupling
solutions (with a scaling limit) actually exists as solutions of the SDE [6, 7] and &Risoach,
depending on the boundary condition for the ghost propagator atzeneentum. For the gauge
invariant meson bound states obtained from Bethe-Salpeter equatiotige [8]difference with
respect to the asymptotic behavior has been convincingly demonstratecd@erst comparative
study. The behavior in the momentum range above several hundreds\6fidwever, seems to
be more important, e.g. when the QCD gluon propagator is plugged into the@@Edrk prop-
agators [9, 10, 11] as dynamical input. Still, the gluon propagator in this mmmerange is not
safely predicted by the present analytical approaches becausecdtion uncertainties. Hence,
there is a request for precise lattice results extrapolated to the continulimfiaite-volume limits
in the intermediate momentum region, both for zero and for finite temperatweangktely, in this
momentum range the propagators are practically free of Gribov ambiguities.

The UV asymptotics should be well understandable by comparison with patim theory.
The lattice propagators in this range have become an interesting soutbe fdetermination of
Amowm [12, 13] and for the attempted identification of gluon condensates [14,QB]the other
hand, the identification of the nonperturbative enhancement of the ghobmglzost propagators
in the intermediate momentum range, over the behavior predicted by plainkaditurtheory is
of particular interest, too. It has been put into relation to effects of ingtantts] and shown to
depend on the presence of confining degrees of freedom like voptice$8, 19].

A couple of years ago we have started the study of higher loop predidtiotise propaga-
tors of interest by Numerical Stochastic Perturbation Theory (NSPT13.i$ta powerful and very
general technique [20] that represents an automatized way of doitgtmeion theory. A first
summary of this new application, with results restricted to the ghost propaga®been given
in Ref. [21]. In two other recent papers, we have discussed alsoltibe gropagator [22] and
compared the NSPT results with Monte Carlo results for the gluon and ghmsagators [23].
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The interested reader should consult these papers for more informataallaletails. The com-
parison requires a reformulation of the fully nonperturbative analysigrding to the logarithmic
definition of the gluon fields.

2. Landau gauge propagators in NSPT

Compared to continuum perturbation theory, lattice perturbation theory is moch com-
plicated. Diagrammatical calculations of the propagators at higher loopkivgtll be hardly
feasible. We have chosen NSPT instead, which is based on a set béldaaagevin equations,
each of them for the gauge link components in a certain order in the couplitggant. Langevin
simulations in general for lattice gauge theory [24] have been propdsadig in the eighties [25]
as an alternative to usual Monte Carlo simulations. Being an adaptation bastmcquantization,
stochastic gauge-fixing was an obligatory part in the case of gaugdaebedior a recent study
using stochastic gauge-fixing, with the focus on questions in close camitéxthe Landau gauge
see Ref. [26]. With stochastic gauge-fixing, transversality is only aqymattely satified, with all
consequences for gauge dependent observables. In orderyagsiuge-dependent quantities, the
usual Monte Carlo approach uses external gauge-fixing applied toahéeMCarlo configurations
until transversality is achieved with the necessary precisfofihe same can be done for the con-
figurations produced by Langevin simulation which are subject to measotenk@r the Langevin
process itself, after each update step, a single iteration of the steepeshtigauge fixing algo-
rithm (see below) can be applied to the updated configuration in order fmesgrunaway zero
modes. In our approach this - and the subtraction of zero modes - contpketesngevin equation
written for the links

%Ux,u(t?n) =i (OxpSclU] — Nxu(t)) Uxu(tin) 2.1)

to a process with stochastic gauge-fixing. Hgres a Gaussian white nois&s is the respective
lattice gauge field action (in our case, the Wilson action), @kg the left Lie derivative with
respect to the indicated link. Since the continuous-time limit is postponed to thaifimaation
data, we repeat the simulations with a set of finite time step vetuassd perform the update
according to the stochastic evolution equation in the Euler scheme

U u(t+&:n) =expli FulU,n]) Uxpu(t;n) . (2.2)

Here then-dependence is made expliait,entering the force additively:

FeulU,n] = e0x uSelU] + Ve - (2.3)

For perturbative applications of the Langevin equation, a decompositithre dihks into terms of
definite order in the coupling constant is applied and followed through allations. This applies
to the links

Upu(t;n) — 1+ %B—'/Zuxﬁ'&(t;n) , (2.4)
>

1As dicussed above, various options exist how to select the “best gapge
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and similarly to the Lie-algebra valued gluon fiédd= logU,

A tim =Y

—1/2p0) .
3By, (2.5)

where antisymmetry to all orders iry;l,fﬁ is enforced. Here also the dependence on ftirte
multiple of €) is indicated.

Then-loop gluon propagator in momentum-space can be practically evaluatedragawver
time steps (or, equivalently, as average over the npjse

3D (p(k)) = <2§1 AV A2 (i > . (2.6)
n

in terms of the Fourier-transformed gluon fielﬁg(')(k,t;n). For the integer-valued 4-tuples
(k1,ko,ks, ka) appearing in the Fourier transformation the assigned lattice momenta are:

- 2 [Tk, 2 . rapy
le(kH) - asm(N“> = asm(7> . (2.7)

The ghost propagator in momentum space,

1 -1 .
G(p(k)) = NZ—1 (TrM~(kt:n)), (2.8)
is actually the Langevin-time average of the Fourier transformed inkTs¢k, t; ) of the Faddeev-
Popov operator
b

My = [yl (2.9)

which contains the backward partial derivat't?{eand the covariant derivative
Dul9] = (1+ L (0 — = (@p(0)2 = = (D) + o (O (0)°...) Of+i Pu(x)
H 2 H 2 VH 720" H 30240 ¥ H H
(2.10)

The latter contains, besides the forward derivarﬂiﬁean expansion in powers bbu]bcz —i fabcd)ﬁ,
the gluon field in the adjoint representation (wdiﬁ = iAf}), which is itself expanded in powers of

1/+/B. The perturbative expansion bfis based on collecting iM(") all terms coming multiplied
with thel-th powerf~'/2 of the coupling. Then the inverse listh order is

[M_l] O _ [M_l] (0) IzZM(I—j) [M_l](j) ’
=

-1
M-1] 0 _ [M(O)} AL (2.11)
Thus G (p(k)) is obtained from sandwichingv ] (=2 hetween plane waves for a set of 4-
tuples(ks, k2, ks, ka), summed over colorig and taking the time average.
The standard definition of the gluon fiekj,(x) in terms of the site-to-site transporters (the
linksUy ;) in usual Lattice Perturbation Theory (LPT) and NSPT differs from efenétion adopted
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in most of the fully non-perturbative calculations (i.e., Monte Carlo simulatioitk external
gauge-fixing), where the linear definition

amy 1 ot
Ax+%,u_2iago( T

(2.12)

traceless

is employed. Before one can compare Monte Carlo with NSPT, the gaugg-ikMonte Carlo
configurations must be implemented with the logarithmic definition

(logg _ 1
Ax+gp iagOIOg(UX’“)' (2.13)

Some implications of this definition have been already studied by Furui andjiNek[27]. In
a recent paper we have posed the question of universality of the -laaddattice Monte Carlo
results with respect to the two definition of the gluon field [23]. It is cruciainigestigate the
gluon and ghost propagators in parallel, in order to realize that botlelated to their counterparts
by multiplicative renormalizations, that are interrelated in such a way that timni coupling is
universal. One must take into consideration that the Faddeev-Popmtapis redefined together
with the gauge functional (see below) corresponding to the respedfiretibn.

3. Gauge fixing according to the gluon field definitions

For the linear definition the gauge functional is

' 1 1
Rl = > (105 e o, ) 3.1)
X,H

while the gauge functional for the logarithmic definition (resembling the féafix tr Aﬁ (x) for
the continuum) is

(Iog n(109) g (log)
Fu 4VNCZ tr [ i AX+27M] . (3.2)

In both cases, these functionals have to be minimized under suitable gaugfermzations acting
on the linksUy ;; — 9 Uy ;s = 0 Uy glﬂu. In any relative minimum the differential Landau gauge
(transversality) condition

(%@Ax) (X)E%(%fg,u‘&g,u) =0, (3.3)

is fulfilled for the respective gluon field, Eq. (2.13) or Eq. (2.12) antdfapothe other. The form

of the gauge functionals essentially determines the type of gauge-fixingtatgo The bilinear
form of FLS"”) [g] in terms of the gauge transformatiomsuggests an overrelaxation or a simulated
annealing algorithm dealing with the “spin” fielf{x) while Fé"m[g} plays the role of the “spin
Hamiltonian”. The dependence Eli_(,'og) [g] on g is more complicated such that a steepest gradi-
ent algorithm with updategx — rxgx is an adequate choice. This is realized either in the local
(unaccelerated) modus with

My = exp(—ior > 5“9Aﬂ°g))(x)> , (3.4)
m



QCD propagators: NSPT versus Monte Carlo Ernst-Michael llgenfritz

= 106 = 106
< 1074 < 10°
IS IS
z 10° 1 %@mn z 10°
¥
< 1072 I < 107 X
5 . 5 .
c 10710 c 1070
il o
3 10724 + linear gauge field definition 3 10724 + linear gauge field definition
é x  logarithmic gauge field definition § x  logarithmic gauge field definition
& 0 100 200 300 400 500 600 700 & 0 100 200 300 400 500 600 700
S iterations S iterations

Figure 1. Change of the maximal value of the squared divergence qmneting to the two gluon field
definitions during gauge fixing according to OR (linear dédmi, left) and the Fourier-accelerated steepest
descent method (for the logarithmic definition, right) (derstrated for a 16configuration a3 = 6.0.

5
g o g 10 _o - unaccelerated
'@ 31 % —<— multigrid-accelerated '§ —— multigrid—accelerated
_g S| % _%) 0t e Fourier-accelerated e
° < © =) -
5 f 5 -
£ 8] k £ 100
E ¥ I E 10°% ==
c c ==
5 8 by ¥ g =
0 N X o > Sl
E T T T T T T E 10 1 T T T T T
003 004 005 006 007 0.08 8* 12* 16* 24% 324
lattice size

a

Figure 2: Number of iterations needed to reach the stopping criteri@ft: as a function of the step size
parameteir of the multigrid-accelerated algorithm (lattice size*18 = 6.0). Right: as a function of the
lattice size for the three investigated logarithmic gaugiad algorithms = 6.0).

or in a non-local, Fourier or multigrid accelerated modus

Iy = exp <—iaq2maXA‘1(z 0u9Aﬂ°g))(x)> . (3.5)
I

Depending on which kind of gauge fixing is attempted, the divergence ¢8r&8sponding to the
complementary gauge field definition remains non-vanishing. This is demimusina-ig. 1. The
iteration number required by some stopping criterion depends on the séepassameten. It is
strongly reduced when the local algorithm is replaced by the non-loczt)exated one. This is
shown in Fig. 2.

The Faddeev-Popov operator has the general form

M = A 8= S (B Sy +CE By (3.6)
[

For the linear definition, this is nothing but the Hessian of (3.1) with respexfitatesimal gauge
transformationg(x) = exp(iw?T?) generated byw? in the neighborhood of the gauge-fixed copy:

Agb = Retr [{Ta,Tb}g (Ux,y +Ux[1,u>] ’ (37)

B = 29etr [TPT2U,,| . G =2Retr[T2TO0, 5,
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Figure 3: The ratioCqyyon relating the gluon propagator for the two definitions of theog field. Data is for
B = 6.0 (left) andp = 9.0 (right) for a 12 and 16 lattice.
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Figure 4. The ratioCgnost relating the ghost propagator for the two definitions of theog field and the
respective Faddeev-Popov operator, fot 48d 14 lattices a8 = 6.0 (left) and = 9.0 (right).

For the logarithmic definition the form is:

ab __ ab ab C abc
A _%[QX O A, T (3.8)

b b b b b

BY _Qﬁu, C;'i‘ Qi‘w Ai—%,u faoc,
where the closed form fcmiu gives rise to the expansion shown in (2.10). To obtain the nonpertur-
bative ghost propagator, the full Faddeev-Popov operator is imgrthe a Laplacian-preconditioned
conjugate gradient algorithm and color-diagonal plane wave souscegéained in [28].

4. Monte Carlo: linear versus logarithmic definition

Comparing the gluon propagator and the ghost propagator for the linéaitide with the
respective counterpart for the logarithmic definition we found that the iattjmmentum indepen-
dent within statistical errors. This is shown in Fig. 3 for the gluon propadatdwo 3 values and
two latttice sizes. The analogous ratio for the ghost propagator gt tvadues and two lattice sizes
is shown in Fig. 4. The resulting renormalized gluon and ghost dressmtjdns for the logarith-
mic definition,Zy = G°D(q) andZgh = G°G(q), are generated in Fig. 5 by data points from thgee
values and three corresponding lattice sizes (chosen such that thegblighime is approximately
kept fixed) collapsing on a single curve. Finally, defining a renormalizzgﬂioup invariant running
coupling through the so-called MinMom scheme [12}/M¢?) = 90 Zgh (a%,¢?), one



QCD propagators: NSPT versus Monte Carlo Ernst-Michael llgenfritz

2.2 15

2.0 % 1.4 = 32° B=6.2
1.8 ~32% B=6.2 131 % = 24% B=6.0
4 . 4 -
— L6113 i = 24* B=6.0 < 1o . - 16*,B=5.38
< 14 - 16* B=5.8 g =~
0] |

N 124 N 1.1 %

] ] e

0.84 0.9+ WMMWWWW

0.6 ‘ ‘ ‘ ‘ ‘ 0.8 ‘ ‘ ‘ ‘ ;

0 2 4 6 8 10 12 0 2 4 6 8 10 12
momentum g [GeV] momentum g [GeV]

Figure 5: Renormalized gluon (left) and ghost dressing functionhfidor the logarithmic definition and
three various lattice spacings= a($3). The physical volume is thereby fixed Yo= (2.2 fm)*. Data has
been renormalized af= p ~ 3.2 GeV.
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Figure 6: Running coupling for various lattice sizes afievalues. Filled symbols refer to the logarithmic
definition, open symbols to the linear one.

sees data from various lattice sizes ghslalues for both definitions of the gluon field falling on
the single curve shown in Fig. 6.

5. NSPT versus Monte Carlo and standard LPT

The NSPT propagator results ofloop order have to be summed up to the highest available
ordernmax by multiplying them with the appropriate powegBs". This restores thg-dependence
of the propagators. We compare the fully nonperturbative results withutheo§lowest orders of
NSPT in Fig. 7. The convergence can be speeded up by boostedpéidnitheory, replacing? as
expansion parameter lgf = g2 /Poer(9%) > g2, WhereRyertis the perturbatively expanded plaquette
which is always measured together with the other observables. Regrtlegiseries in powers of
gg gives an improved convergence. This is illustrated for the running cayplirig. 8 for two
values of the bare coupling. The syml§0]0,0,0) means that the Monte Carlo data are restricted
to the trivial joint Polyakov loop sector when the Polyakov loops in all 4 dioes take almost real
values. This is achieved [&/(3) flipping before gauge fixing. Fg = 9.0 the Monte Carlo data in
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Figure 7: Comparison of MC with NSPT results for the bare gluon dresdimction (left) and ghost
dressing function (right) g8 = 6.0. The NSPT results are shown cumulatively at tree, 1-loabZatoop
level for the gluon and at 1-loop, 2-loop and 3-loop leveltfur ghost.
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Figure 8: Comparing naive and boosted LPT (based on NSPT) data foutméng coupling constarts(q?)
with corresponding MC data from the trivial Polyakov sect0y0,0,0) for a 12* lattice. Left: B = 6.0.
Right: B = 9.0. For the NSPT data, the gluon (ghost) dressing functiorouplbop (3-loop) accuracy has
been included.

this sector differ from measurements that leave the Polyakov loop unvalolsek convergence of
NSPT to MC results in the high-momentum range is only possible fofGj®0,0) sector.

We have developed a technique to eliminate hypercubic artefacts and imeiteffects and to
perform the continuum limit. To present the results up to the three-loop @YePP] in the generic
form (with L = log(pa)?)

~ 1 1 -
Jnloor(q, p, B) = 1+ﬁ (cril+cro) +...+ B (canL"+Cnp1L" .. 4 Cno) -

one needs only the leading-log termgL" from standard LPT as external input. The non-log terms
enter the non-leading-log terms of all higher loops. The one-loop resirltsdth propagators
reproduce well the analytic results of Ref. [29]. The remaining coeffisiare the result of our
study.
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