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Taking into account the finiteness of the system created in heavy ion collisions, we show sizable

results for the modifications of the chiral phase diagram at volume scales typically encountered

in current experiments and demonstrate the applicability of finite-size scaling as a tool in the

experimental search for the critical endpoint. Using data from RHIC and SPS and assuming

finite-size scaling, we find that RHIC data from 200 GeV down to19.6 GeV is only consistent

with a critical point atµ & 510 MeV. We also present predictions for the fluctuations at lower

energies currently being investigated in the Beam Energy Scan program.
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Relativistic heavy ion collision experiments have entereda new era of investigations of the
phase diagram of strong interactions. The Beam Energy Scan program at RHIC [1] is probing a
relatively wide window in center-of-mass energy, which translates into higher values of the bary-
onic chemical potentials and lower values of the temperature associated with the plasma created in
the collision process. The hope is that the scan will able to reach the region where a second-order
critical point is expected to exist [2]. Therefore, pragmatic theoretical tools that can be phenomeno-
logically applied to data analysis are demanded.

Identifying the presence of a critical point, and even of a first-order transition coexistence line,
is not a simple task in heavy ion experiments. One has to uncover, from different sorts of complex
backgrounds, signatures related to large fluctuations thatwould stem from the critical behavior of
the order parameter of the chiral transition, the chiral condensate. In a system in equilibrium and in
the thermodynamic limit, those are a consequence of the unlimited growth of the correlation length
[3], and in the case of heavy ions would lead to non-monotonicbehavior [4, 5] or sign modifications
[6] of particle correlation fluctuations.

Although often compared to the case of the early universe at the time of the primordial quark-
hadron transition, the space-time scales present in the dynamics of the quark-gluon plasma formed
in heavy ion collisions differ from the cosmological ones byalmost twenty orders of magnitude.
So, realistically, this system is usually small, short-lived, and part of the time out of equilibrium.
The finite (short) lifetime of the plasma state and critical slowing down could severely constrain the
growth of the correlation length, as shown by estimates in Refs. [7, 8]. The finite size of the system
could dramatically modify the phase structure of strong interaction, as shown using lattice simula-
tions [9, 10] and different effective model approaches [11,12, 13, 14], and also affect significantly
the dynamics of phase conversion [15, 16]. As a consequence,all signatures of criticality based on
non-monotonic behavior of particle correlation fluctuations will probe apseudocritical pointthat
can be significantly shifted from the genuine (unique) critical endpoint by finite-size corrections
and will be sensitive to boundary effects.
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Figure 1: Displacement of the pseudocritical end-
point in the T − µ plane as the system size is de-
creased for different boundary conditions.
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Figure 2: Normalized crossover temperature atµ = 0
as a function of the inverse size 1/L for the cases with
PBC and APC.

The latter effect was demonstrated using the linear sigma model coupled to quarks with two
flavors [17] as an effective theory for the chiral transitionin Ref. [14]. Here we illustrate the rele-
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vance the effects coming from the finite size of the system, oftypical linear sizeL, and the nature
of the boundary might have in the investigation of the phase diagram of strong interactions using
heavy ion collisions in Figs. 1 and 2. Fig. 1 shows the displacement of the pseudocritical point,
comparing periodic boundary conditions (PBC) and anti-periodic boundary conditions (APC): both
coordinates of the critical point are significantly modified, andµCEP is about 30% larger for PBC.
For µ = 0, the crossover transition is also affected by finite-size corrections, increasing as the sys-
tem decreases, as shown in Fig. 2. Again, PBC generate largereffects: up to∼ 80% increase in the
crossover transition temperature atµ = 0 whenL = 2 fm. The range of values for the linear size
L is motivated by the estimated plasma size presumably formedin high-energy heavy ion colli-
sions at RHIC [18]. The upper limit is essentially geometrical, provided by the radius of the nuclei
involved, whereas the lower limit is an estimate for the smallest plasma observed.

Nevertheless, the finiteness of the system in heavy ion collisions also brings a bright side: the
possibility of using finite-size scaling (FSS) analysis [19, 20, 21]. FSS is a powerful statistical
mechanics technique that prescinds from the knowledge of the details of a given system; instead,
it provides information about its criticality based solelyon very general characteristics. And since
the thermal environment corresponding to the region of quark-gluon plasma formed in heavy ion
collisions can be classified according to the centrality of the collision, events can be separated
according to the size of the plasma that is created. So, heavyion collisions indeed provide an
ensemble of differently-sized systems.

Although it is clearly not simple to define an appropriate scaling variable in the case of heavy
ion collisions, the flexibility of the FSS method allows for apragmatic approach for the use of
scaling plots in the search for the critical endpoint as was delineated in Ref. [14] and performed
in Ref. [22]. The essential point is that although the reduced volume of the plasma formed in
high-energy heavy ion collisions will dissolve a possible critical point into a region and make the
effects from criticality severely smoothened, as discussed above, the non-monotonic behavior of
correlation functions for systems of different sizes, given by different centralities, must obey FSS
near criticality [3, 23].
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Figure 3: ScaledσpT /〈pT〉 vs µ for different sys-
tem sizes, and withν = 2/3 andγx = 1. Data ex-
tracted from RHIC collisions at energies

√
sNN =

19.6,62.4,130, and 200 GeV (linear fit, see text).
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Figure 4: ScaledσpT /〈pT〉 vs µ for different system
sizes. Again,ν = 2/3 andγx = 1. Data extracted from
RHIC collisions at energies

√
sNN = 19.6,62.4,130,
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Using data from RHIC and SPS and defining appropriate scalingvariables, we can generate
scaling plots for data sets with

√
sNN = 17.3,19.6,62.4,130,200 GeV. For finiteL, crossover effects

become important. If the correlation length diverges asξ∞ ∼ t−ν at criticality, whereν is the
corresponding critical exponent, in the case ofL−1t−ν ≫ 1 the system is no longer governed by
the critical fixed point andL limits the growth of the correlation length, rounding all singularities
[3, 23]. If L is finite,ξ is analytic in the limitt → 0, and one can draw scaling plots ofL/ξ vs. some
coupling for different values ofL to find that all curves cross at a given value in this limit, which is
a way to determine its critical value. The critical temperature and so on can also be determined in
this fashion, since the curves will also cross att = tc. This scaling plot technique can be extended,
taken to its full power for other quantities, such as correlation functions. An observableX in a finite
thermal system can be written, in the neighborhood of criticality, in the following form [21]:

X(t,L) = Lγx/ν f (tL1/ν ) , (1)

whereγx is the bulk (dimension) exponent ofX and{g} dimensionless coupling constants. The
function f (y) is universal up to scale fixing, and the critical exponents are sensitive essentially to
dimensionality and internal symmetry, which will give riseto the different universality classes [23].
Using the appropriate scaling variable, all curves should collapse into one single curve if one is not
far from the critical point. So, this technique can be applied to the analysis of observables that are
directly related to the correlation function of the order parameter of the transition, such as fluctua-
tions of the multiplicity of soft pions [4]. The correct scaling variable should measure the distance
from the critical point, thereby involving both temperature and chemical potential in the case of the
QCD phase diagram. This would produce a two-dimensional scaling function and make the anal-
ysis of heavy ion data highly nontrivial. Phenomenologically, we adopt a simplification motivated
by results from thermal models for the freeze-out region, connecting temperature and chemical po-
tential. We can parametrize the freeze-out curve by

√
sNN, and build our one-dimensional scaling

variable from this quantity and the size of the system. For details, we refer the reader to Ref. [22].
To search for scaling, we consider the correlation measureσpT /〈pT〉 [24] scaled byL−γx/ν ,

according to Eq. 1. We consider thepT fluctuationsσpT scaled by〈pT〉 to obtain a dimensionless
variable. We use the correlation data measured in bins corresponding to the 0− 5%, 5− 10%,
10−20%, 20−30%, 30−40%, 40−50%, 50−60%, and 60−70% most central collisions. We
estimate the corresponding lengthsL to be 12.4, 11.1, 9.6, 8.0, 6.8, 5.6, 4.5, and 3.4 fm. The
exponentν = 2/3 is determined by the Ising universality class of QCD and we consider values of
γx around 1 (ignoring small anomalous dimension corrections). We also varied the value ofγx from
0.5 to 2.0 and found that changingγx within this range does not improve the scaling behavior.

In Figs. 3 and 4 we plotσpT /〈pT〉 scaled byL−γx/ν vs µ for different system sizes, using data
extracted from collisions at

√
sNN = 19.6,62.4,130,200 GeV. If there is a critical point atµ = µcrit,

the curves for different sizes of the system should cross at this value ofµ . However, since the
currently available data is restricted to not so large values of the chemical potential, one has to
perform extrapolations using fits. The scaling functionf in Eq. (1) is expected to be smoothly
varying around the critical point, so we fit the data corresponding to a given linear sizeL to a
polynomial, but constraining the polynomials to enforce the condition that all the curves cross at
someµ = µcrit, whereµcrit is an adjustable parameter in the fit. This clearly assumes the existence
of a critical point. In Fig. 3 we use a linear fit. The approximate energy independence ofσpT /〈pT〉
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along with the linear fit, leads to a very largeµ value where the curves can cross (µ ∼ 3 GeV).
There is no reason however to assume a linear fit function, so in Fig. 4 we also try a second order
polynomial. The assumption of a second order polynomial function for f allows the curves from
different system sizes to cross at a much smaller value ofµ . Based on this fit, we find that the data
is consistent with a critical point atµ ∼ 510 MeV corresponding to a

√
sNN of 5.75 GeV.
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Figure 5: The expected measurement ofσpT /〈pT〉 as a function of the number of participants at lower
energies assuming the critical point is at 509 MeV as extracted from the quadratic polynomial fit of STAR
data.

RHIC has also run at lower energies in order to search for a critical point in the Beam Energy
Scan program. Using the quadratic polynomial fit of STAR data(Fig. 4) and assuming the critical
point is at 509 MeV we can make predictions forσpT /〈pT〉 at lower energies. We show this
expectation as a function of the number of participants,Npart, for three proposed beam energies:
11.5,7.7 and 5 GeV in Fig. 5. Notice that the centrality dependence changes once one moves to the
other side of the critical point. This is a condition enforced by finite-size scaling which provides a
generic signal for having reached the first-order phase transition side of the critical point.

Finite size effects are non negligible in heavy ion experiments and the mapping of the phase
diagram for QCD they can produce. In fact, most thermodynamic quantities will be considerably
shifted in the pseudocritical diagram that is actually probed, so that comparisons to results from
the lattice in the thermodynamic limit should be made with caution. On the other hand, finite-
size scaling techniques are simple and well defined in the case of heavy ion collisions. Even if
it is hard to define the ideal scaling variable, it provides a pragmatic method to search for the
critical point and investigate the universality properties of QCD. The fact that FSS prescinds from
the knowledge of the details of the system under consideration, providing information about its
criticality based solely on its most general features, makes it a very powerful tool for data analysis.
From a very limited data set in energy spam, we have used FSS toexclude the presence of a critical
point at small values of the baryonic chemical potential, below 450 MeV. Besides, FSS is naturally
fit to produce concrete predictions: once one assumes the existence of criticality, the scaling of
correlation functions must be manifest in its vicinity.
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