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Relativistic heavy ion collision experiments have enteaedew era of investigations of the
phase diagram of strong interactions. The Beam Energy Soayngm at RHIC [1] is probing a
relatively wide window in center-of-mass energy, whicmslates into higher values of the bary-
onic chemical potentials and lower values of the tempegatissociated with the plasma created in
the collision process. The hope is that the scan will able&zh the region where a second-order
critical point is expected to exist [2]. Therefore, pragim#teoretical tools that can be phenomeno-
logically applied to data analysis are demanded.

Identifying the presence of a critical point, and even of stfarder transition coexistence line,
is not a simple task in heavy ion experiments. One has to @wncthem different sorts of complex
backgrounds, signatures related to large fluctuationsatbatd stem from the critical behavior of
the order parameter of the chiral transition, the chiraldemsate. In a system in equilibrium and in
the thermodynamic limit, those are a consequence of thenitati growth of the correlation length
[3], and in the case of heavy ions would lead to non-monotbakavior [4, 5] or sign modifications
[6] of particle correlation fluctuations.

Although often compared to the case of the early univerdeesdtiine of the primordial quark-
hadron transition, the space-time scales present in thendigs of the quark-gluon plasma formed
in heavy ion collisions differ from the cosmological onesdiynost twenty orders of magnitude.
So, realistically, this system is usually small, shoretly and part of the time out of equilibrium.
The finite (short) lifetime of the plasma state and critid¢ahsng down could severely constrain the
growth of the correlation length, as shown by estimates iis.H&, 8]. The finite size of the system
could dramatically modify the phase structure of strongriattion, as shown using lattice simula-
tions [9, 10] and different effective model approaches [12,,13, 14], and also affect significantly
the dynamics of phase conversion [15, 16]. As a consequaflicgnatures of criticality based on
non-monotonic behavior of particle correlation fluctuaiowill probe apseudocritical pointhat
can be significantly shifted from the genuine (unigue) caitiendpoint by finite-size corrections
and will be sensitive to boundary effects.
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Figure 1. Displacement of the pseudocritical end¥figure2: Normalized crossover temperaturgiat 0
point in theT — u plane as the system size is deas a function of the inverse sizél1for the cases with
creased for different boundary conditions. PBC and APC.

The latter effect was demonstrated using the linear sigma@eimmmupled to quarks with two
flavors [17] as an effective theory for the chiral transitiorRef. [14]. Here we illustrate the rele-
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vance the effects coming from the finite size of the systentymital linear size_, and the nature
of the boundary might have in the investigation of the phaagrdm of strong interactions using
heavy ion collisions in Figs. 1 and 2. Fig. 1 shows the dispiaent of the pseudocritical point,
comparing periodic boundary conditions (PBC) and antigukic boundary conditions (APC): both
coordinates of the critical point are significantly modifiedd Licep is about 30% larger for PBC.
For u = 0, the crossover transition is also affected by finite-smgeactions, increasing as the sys-
tem decreases, as shown in Fig. 2. Again, PBC generate kffgets: up to~ 80% increase in the
crossover transition temperaturetat= 0 whenL = 2 fm. The range of values for the linear size
L is motivated by the estimated plasma size presumably foimé&igh-energy heavy ion colli-
sions at RHIC [18]. The upper limit is essentially geometiiiprovided by the radius of the nuclei
involved, whereas the lower limit is an estimate for the $asdiplasma observed.

Nevertheless, the finiteness of the system in heavy iorsamilé also brings a bright side: the
possibility of using finite-size scaling (FSS) analysis,[29, 21]. FSS is a powerful statistical
mechanics technique that prescinds from the knowledgeeodi¢itiails of a given system; instead,
it provides information about its criticality based solely very general characteristics. And since
the thermal environment corresponding to the region ofkygaron plasma formed in heavy ion
collisions can be classified according to the centralityhaf tollision, events can be separated
according to the size of the plasma that is created. So, hieavgollisions indeed provide an
ensemble of differently-sized systems.

Although it is clearly not simple to define an appropriateliagavariable in the case of heavy
ion collisions, the flexibility of the FSS method allows fopeagmatic approach for the use of
scaling plots in the search for the critical endpoint as welsxdated in Ref. [14] and performed
in Ref. [22]. The essential point is that although the redueelume of the plasma formed in
high-energy heavy ion collisions will dissolve a possibigical point into a region and make the
effects from criticality severely smoothened, as discdist#gove, the non-monotonic behavior of
correlation functions for systems of different sizes, giby different centralities, must obey FSS
near criticality [3, 23].
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Figure 3: Scaledop, /(pr) vs u for different sys- Figure4: Scaledoy, /(pr) vs u for different system
tem sizes, and witlv = 2/3 andy = 1. Data ex- sizes. Againy =2/3 andy = 1. Data extracted from
tracted from RHIC collisions at energiggsyn = RHIC collisions at energieg/syn = 19.6,62.4,130,
19.6,62.4,130, and 200 GeV (linear fit, see text).  and 200 GeV (second order polynomial fit, see text).
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Using data from RHIC and SPS and defining appropriate scakni@bles, we can generate
scaling plots for data sets witfiSyn = 17.3,19.6,62.4,130,200 GeV. For finitd, crossover effects
become important. If the correlation length divergeséas~ t~ at criticality, wherev is the
corresponding critical exponent, in the case_oft=" >> 1 the system is no longer governed by
the critical fixed point andL. limits the growth of the correlation length, rounding ahgilarities
[3, 23]. If Lis finite, & is analytic in the limit — O, and one can draw scaling plotslofé vs. some
coupling for different values df to find that all curves cross at a given value in this limit, @his
a way to determine its critical value. The critical temperatand so on can also be determined in
this fashion, since the curves will also cross$ att.. This scaling plot technique can be extended,
taken to its full power for other quantities, such as cotretefunctions. An observabl¥ in a finite
thermal system can be written, in the neighborhood of dlitig in the following form [21]:

X(t,L) = L%V (LYY, (1)

where y is the bulk (dimension) exponent &f and {g} dimensionless coupling constants. The
function f(y) is universal up to scale fixing, and the critical exponenéssansitive essentially to
dimensionality and internal symmetry, which will give rigethe different universality classes [23].
Using the appropriate scaling variable, all curves shoalthpse into one single curve if one is not
far from the critical point. So, this technique can be appt®the analysis of observables that are
directly related to the correlation function of the ordergraeter of the transition, such as fluctua-
tions of the multiplicity of soft pions [4]. The correct stoaj variable should measure the distance
from the critical point, thereby involving both temperawand chemical potential in the case of the
QCD phase diagram. This would produce a two-dimensiondingcunction and make the anal-
ysis of heavy ion data highly nontrivial. Phenomenolodicalre adopt a simplification motivated
by results from thermal models for the freeze-out regionpeeting temperature and chemical po-
tential. We can parametrize the freeze-out curve /sy, and build our one-dimensional scaling
variable from this quantity and the size of the system. Ftaitde we refer the reader to Ref. [22].

To search for scaling, we consider the correlation measyyé(pr) [24] scaled byL —%/V,
according to Eq. 1. We consider tipe fluctuationso,, scaled by(pr) to obtain a dimensionless
variable. We use the correlation data measured in bins smoreling to the 6 5%, 5— 10%,
10— 20%, 20— 30%, 30— 40%, 40— 50%, 50— 60%, and 60- 70% most central collisions. We
estimate the corresponding lengthgo be 124, 111, 96, 80, 6.8, 56, 45, and 34 fm. The
exponentv = 2/3 is determined by the Ising universality class of QCD and aresaler values of
¥ around 1 (ignoring small anomalous dimension correction® also varied the value ¢f from
0.5 to 20 and found that changing within this range does not improve the scaling behavior.

In Figs. 3 and 4 we plob, /(pr) scaled byL~%/V vs u for different system sizes, using data
extracted from collisions ay/syn = 19.6,62.4,130,200 GeV. If there is a critical point at = Llcit,
the curves for different sizes of the system should croskiatvalue ofu. However, since the
currently available data is restricted to not so large \&lokethe chemical potential, one has to
perform extrapolations using fits. The scaling functibim Eq. (1) is expected to be smoothly
varying around the critical point, so we fit the data corresfiog to a given linear sizé to a
polynomial, but constraining the polynomials to enforce tiondition that all the curves cross at
someu = Lgit, Wherepi is an adjustable parameter in the fit. This clearly assuneesxistence
of a critical point. In Fig. 3 we use a linear fit. The approximanergy independence of, /(pr)
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along with the linear fit, leads to a very largevalue where the curves can crogs+ 3 GeV).
There is no reason however to assume a linear fit functiom &igi 4 we also try a second order
polynomial. The assumption of a second order polynomiattion for f allows the curves from
different system sizes to cross at a much smaller valye &ased on this fit, we find that the data
is consistent with a critical point at ~ 510 MeV corresponding to gSyn of 5.75 GeV.
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Figure 5: The expected measurementayf; /(pr) as a function of the number of participants at lower
energies assuming the critical point is at 509 MeV as exrhftom the quadratic polynomial fit of STAR
data.

RHIC has also run at lower energies in order to search fortigarpoint in the Beam Energy
Scan program. Using the quadratic polynomial fit of STAR d&ig. 4) and assuming the critical
point is at 509 MeV we can make predictions fog, /(pr) at lower energies. We show this
expectation as a function of the number of participahs,, for three proposed beam energies:
115,7.7 and 5 GeV in Fig. 5. Notice that the centrality dependenemgbls once one moves to the
other side of the critical point. This is a condition enfard®y finite-size scaling which provides a
generic signal for having reached the first-order phaseitran side of the critical point.

Finite size effects are non negligible in heavy ion expenta@and the mapping of the phase
diagram for QCD they can produce. In fact, most thermodynaguantities will be considerably
shifted in the pseudocritical diagram that is actually mehbso that comparisons to results from
the lattice in the thermodynamic limit should be made withtma. On the other hand, finite-
size scaling techniques are simple and well defined in the chieavy ion collisions. Even if
it is hard to define the ideal scaling variable, it providesragmatic method to search for the
critical point and investigate the universality propesta QCD. The fact that FSS prescinds from
the knowledge of the details of the system under consideraproviding information about its
criticality based solely on its most general features, radtka very powerful tool for data analysis.
From a very limited data set in energy spam, we have used F&&liade the presence of a critical
point at small values of the baryonic chemical potentialpwel50 MeV. Besides, FSS is naturally
fit to produce concrete predictions: once one assumes tsteege of criticality, the scaling of
correlation functions must be manifest in its vicinity.
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