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We consider the free enerd/[J] = Wi(H) of QCD coupled to an external sourdﬁ(x) =

HB cogk- x), WhereHﬁ is, by analogy with spin models, an external “magnetic” field with a
color index that is modulated by a plane wave. We report an optimal bouid @) and an

exact asymptotic expression ok (H) at largeH. They imply confinement of color in the sense
that the free energy per unit voluridé (H ) /V and the average magnetizatiogk,H) = \—}%

vanish in the limit of constant external fiekd— 0. Recent lattice data indicate a gluon propagator
D(K) which is non-zeroD(0) # 0, atk = 0. This would imply a non-analyticity i (H) atk =0.

We present a model that is consistent with the new results and exhibits (non)-analytic behavior.
Direct numerical tests of the bounds are proposed.
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1. Introduction

Recent numerical studies on large lattices of the gluon propa@digrin Landau gauge in
3 and 4 Euclidean dimensions, reviewed recentlylinyield finite values forD(0) # 0 [2] - [7],
in apparent disagreement with the theoretical expectationDf@yt = 0, originally obtained by
Gribov [8], and argued in9]. The argument9d] which leads tdD(0) = 0, relies on the hypothesis
that the free energW(J) in the presence of sourcdss analytic inJ at low momentunk. That
hypothesis should perhaps be dropped in view of the apparent disagreement with the lattice data.
This is of interest because a non-analyticity in the free energy is characteristic of a change of phase.
The free energW(J) enters the picture because it is the generating functional of the connected
gluon correlators. In particular the gluon propagator is a second derivatWéXbfatJ = 0,

S2W(J)

DO (xy)= — 2 | . (1.1)

wY) = 53205380y ls-o0

The free energyV(J) in the presence of sourcéss given by
expW(J) = (exp(J,A))
_ / dAp(A) expJ,A), (1.2)
Q

wherep, v are Lorentz indices, aral b are color indices, and

(J,A) = / d®x 30 (X) A% (). (1.3)

The integral oveA is effected in Landau gaugg,A, = 0, and the domain of integration is re-
stricted to the Gribov regio®, a region inA-space where the Faddeev-Popov operator is non-
negativeM(A) = —d, D, (A) > 0. We use continuum notation and results, but we have in mind the
limit of lattice QCD in the scaling region, that is gauge-fixed to the Landau (or Coulomb) gauge by
a numerical algorithm that minimizes the Hilbert norm squafagd?, and thereby fixes the gauge
to the interior of the Gribov region. The vector potential, givenly) = gAPe"(x), is unrenormal-
ized, and has engineering dimension in mass UAits)] = 1 in all Euclidean dimensiob, while
[H] = D —1. (Our results also hold in the Coulomb gauge at fixed time, in which Dasethe
number of space dimensions.) The dengity) is a positive, normalized probability distribution
with support in the Gribov regiof. Because there are Gribov copies indi2lep (A) is not unique
and, in general, depends on the minimization algorithm.

We consider a source that has the particular form

I (x) = HJ cogkx), (1.4)

where we have aligned the 1-axis aldggo the free energy
expWi(H) = ( exp[/de HP cos(kxq) A (X)] ), (1.5)

depends only on the parametérand HE. This is sufficient to generate the gluon propagator for
momentunk,
aZWk(O)

— 1.
IHAIHP’ (1.6)

DE°(k) =2
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where

Wi(H) = \M(\(/l_l) (1.7)

is the free energy per unit Euclidean volume. Becaliggx) is transverse, only the transverse
part ofH is operative, and we imposk;HB = 0, which yieldsH2 = 0, and we writeH?, where

i = 2,... D. By analogy with spin models;l® may be interpreted as the strength of an external
“magnetic” field, with a color indeb, which is modulated by a plane wave ¢k ). (This external
magnetic fieldHP, with color indexb, should not be confused with the Yang-Mills color-magnetic
field Fi?.)

Arigorous bound fo(H ) on a finite lattice was given ir9] which holds forany(numerical)
gauge fixing with support inside the Gribov regi@n One can easily show that in the limit of large
lattice volumeV, and in the continuum limit, this implies the Lorentz-invariant continuum bound
in D Euclidean dimensions,

wi(H) < (2DK*)Y2|H], (1.8)

where|H|? =5, 5(HR)?. A model satisfying the bound (8) was recently exhibited ini[].
More recently, a stricter bound faw (H) at finiteH was obtained]1], that also holds foany
(numerical) gauge fixing with support inside the Gribov regin

Wi (H) < 27Y2k tr[(H3H3)Y2]. (1.9)

HereH#H?2 is the matrix with elementbliaHf‘. It has positive eigenvalues, and the positive square
root is understood. A proof may be found in the Appendix that this bound is stricter than the old
bound (.8). This bound is in fact optimal for a probability distributigriA) of which it is known
only that its support lies inside the Gribov region.

The same expression also provides the asymptotic formy@fl) at largeH, and infinite
Euclidean volum& [11] for any numerical gauge fixing with probability densjiyA) with support
that reaches all boundary points®f (but which may vanish on the boundapyA) =0 for A€ 9Q)

Wias(H) = 27 Y2k tr[(H3H#) Y2, (1.10)
Either bound yields in the zero-momentum limit

Wo(H) = lim wi(H) = 0. (1.11)

As discussed inq], this states that the system does not respond to a constant external color-
magnetic fieldho matter how stronglt is a consequence of the proximity of the Gribov horizon
in infrared directions. We shall return in the concluding section to the physical implications of this
result for confinement of color.

If wi(H) were analytic inH in the limitk — 0O, eq. (.11) would imply that all derivatives of
the generating functiomp(H) vanish, including in particular the gluon propagatbigf atk = 0,
D(0) = 0. However, as noted above, this disagrees with recent lattice data which indicate a finite
value,D(0) # 0, in Euclidean dimensions 3 and 4. If this is true, thgsH) must become non-
analytic inH in the limit k — 0. In order to get some insight about this, we examine the behavior
of an improved model that has the exact asymptotic beha¥iafy,
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2. Improved model

The model is defined by the expression for the free energy

K?HaH2\ 1/2 1 KPHaHa\1/2 |
Wimod(H) = g(k){tr[(l + W) - q —trln [2 (l + 20 ) +2 @ } 2.1)
whereg(k) > 0 is an as yet undetermined function, &fH? is the matrix with eIemenﬂsliaHf‘, for
i,j=2,... D. This model possesses the following desirable featurfs (i) It satisfieswi mod(0) =
0, which is correct a = 0 for a normalized probability distributiofdA p(A) = 1. (ii) It has the
asymptotic limit

W H
Wias(H) = lim Wicmod(4H)
’ H—0 u
that is correct at largkl for any numerical gauge fixing that is strictly positive in the interior of the
Gribov regionQ. (iii) It satisfies the optimal bound

= 2712k tr[(H3H?) /2], (2.2)

Wicmod(H) < 272k tr[(H3H?)Y/2), (2.3)

which implies that the generating function vanishe& &t 0, Womod(H) = 0. (iv) The matrix of
second derivatives is positive in the sense that

2°w, H
i aﬁ;;“a(’dH(jb Jp >0 (2.4)
holds for allv? andH?2, as required for this matrix to be a covariance.

Because of the propertyo mod(H) = 0, there must be some non-analyticity if, as indicated by
numerical calculations, the gluon propagddgk) atk = 0 is positiveD(0) > 0. It is instructive to
see what kind of analyticity this would be in our model. 12giH) > 0 be the largest eigenvalue
of the matrixHiaHja. Inspection of 2.1) shows thawi med(H) is analytic inH inside a radius of
convergence

20°(k
AH) = ké ). (2.5)
Moreover from £.1) we have at smal,
k2
Wemod(H) = gos HIHE + (k) Olk™H /g (k)] (2.6)
For the gluon propagatdd (k) ~ aaﬁ“;g"'jb ~ k?/g(K) to be finite atk = 0, as suggested by the

lattice data, we must hawgk) = constk2 neark = 0. In this case the coefficient of ti&* term is
of order /k?, which diverges ak — 0, as do all higher order coefficients. Moreover the radius of
convergence of the series expansiomphod(H) is A (H) = O(k?), which vanishes liké?.

Suppose thag(k) has a power law behavigfk) ~ k¥ atk = 0. Then the radius of convergence
behaves likel (H) ~ kY2, which approaches 0 witkfor v > 1. The gluon propagator behaves
like D(K) ~ k¥7Y, andwi mog(H) is non-analytic inH atk = 0 when the propagator has a power
law D(k) ~ kP with p < 1. Gribov’s original calculation gav® (k) ~ k?/m* which corresponds
to g(k) = O(n*), andwi moa(H) is analytic inH atk = 0, with a radius of convergende(H) =

O(k™?) — oo for k — 0.
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3. Conclusion

By analogy with spin models, we define, for each momenkythe analog of the bulk mag-
netization in the presence of the external “magnetic” ftéfd

IW(H)
IHE

MR (k. H) = (3.1)

which describes the reaction of the spin system to the external color-magnetic field. Its physical
meaning in gauge theory is apparent frabrb{ which yields,

ME(k.H) = ( / dPx cog(kx ) AP (X))
= (1/2)( aP(k) +aP(—kK) )u- (3.2)

Thus the “bulk magnetization” is in fact theth fourier component of the gauge field in the pres-
ence of the external magnetic field. We also define the magnetization per unit (Euclidean) volume

mi(k,H) = M‘a(\l/(’H), (3.3)
given by
ik, H) = a‘g",‘j;')- (3.4)

The asymptotic free energy (L determines the asymptotic magnetization per unit volume
at largeH,

Wi as(H)
nﬁas(ka) = %Hsia

_ 27]_/2k[(Hbe)71/2]inja. (35)

Its magnitude is given bynf, P, ) (k,H) = k?/2, and we obtain the simple formula
Jim (mff) (k H) =k*/2 (3.6)

which holds for any numerical gauge fixing with support extending up to the boundary of the
Gribov regionQ.

We arrive at the remarkable conclusion that in the limit of constant external magneti&field,
0, the color magnetization per unit volume vanishesmatter how strong the external magnetic
field,

lim lim mé(k.H) = 0. (3.7)

Thus the system does not respond to a constant external color-magnetic field. In this precise sense
the color degree of freedomP(k,H) = = (aP (k) +aP(—k))n is absent ak = 0. This conclusion

holds whether or not the free enengy(H) is analytic inH in the limitk — 0. Lattice data would
indicate that it is not analytic. Besides reporting this result, we have presented a model, defined in
(2.1), which saturates the asymptotic limit.( 0, and exhibits confinement of color. As we have
seenWmod(H) may be either analytic i, or not, atk = 0, depending on the behavior gfk)
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atk =0, but in either case, the conclusion stands, that the constant color degree of freedom of the
gauge field is confined.

Equations {.9) and (.10 may be checked numerically, at least in principle, by using the
formula exp(H) = (exp [ dPx HPcogkx;)AP(x)]) to make a numerical determination of the
generating function itself. For large valueskfthis may fluctuate too wildly. Alternatively one
may measure the magnetization from the fornMﬁ;(k, H) = (J dPx cogkx;)AP(x)), where the
source termHP cogkx )AP(x) is included in the action that one simulates. This requires simulating
the theory fixed in the Landau gauge instead of generating an ensemble from the gauge-invariant
Wilson action then gauge fixing. It may be convenient to do this by numerical simulation of stochas-
tic quantization 13] because that avoids calculating the Faddeev-Popov determinant explicitly.
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A. The new bound is stricter than the old

To prove that the new bound is stricter we write the old bouhd)( for the case thak is
aligned along the 1-axis, a%(H) < Bs, where

B1 = (2D)Y2K[tr(H3H®))Y/2. (A1)

We now diagonalize the matrHiaHf‘ by a rotation in th€D — 1)-dimensional space, with eigen-
valuesi;, so

D 1/2
Bi=(2D)Y%k( T Ai) . (A.2)
(3%)
The new boundX(.9) readsw(H) < B, where
1/2 2 1/2
B,=2""7%k§ A", (A.3)

and we must sho, < B;. (Note that the operations of square root and trace are interchanged.)
We have

D
Bf = 2DK* ) A;, (A.4)
and

D 1/2,1/2
i,]=2

— 2712 (iki +i§_27q1/ A 2)
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=2 WD -1) _i)q
= (4D)" YD - 1)7B§. (A.5)

We thus obtairB3 < (4D)~1(D — 1) B? < BZ, so the new bound is stricter, as asserted.
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