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1. Introduction: A note on the axial anomaly

This workshop is calle@dhe many faces of QGand actually most participants really expe-
rienced their work with QCD being multifaceted. First of all, most success€C® are related
to processes with high-momentum transfer in which asymptotic freedom gh&ajles the use of
perturbation theory. On the other hand, although QCD was invented 83 gga [3] we only start
to understand its infrared regime where we face all kind of strong-irtteraphenomena, most
prominently confinement, anomalous and dynamical chiral symmetry breakidghe formation
of relativistic bound states.

With respect to the anomaly | want to recall a seminal result [4] which may dselp sum-
marized as follows: the axial U(1) symmetry is always anomalously brokerdtok-like gauge
theories with vacuum angl® = 0. One possibility to explain this anomaly rests on the existence
of quark zero modes in topologically non-trivial fields [5, 6]: A randoistibution of (not nec-
essarily integer) winding number spots leads to a non-vanishing topolagiseéptibility in the
thermodynamic limit. Via the index theorem one can then associate percolatirkgzgua modes,
and they eventually cause the anomalous breaking of the axial U(1) symmetry

As this explanation is so overwhelmingly successful the question arisebavlieis the only
existing one. And if another one is available, do these several explagaimtude each other?
Here an historic example might be helpful: Everybody of us remembershi®graduate lectures
how to derive Bloch waves in a periodic potential by employing the Schrédieguation. A short
look in Sidney Coleman’s Erice Lectures “The uses of instantons” [#elver, tells us how to
achieve the same by instanton calculus techniques. Of course, nobodywafuld ever dare to
believe that one would have to add instantons to the Schrddinger equatibtaio Bloch waves.
The Schrédinger equation and instanton calculus are simply two diffeidriitpies to obtain the
same physical result. On the other hand, one can hear quite often thendpi@i@ne has to add to
some non-perturbative techniques éag. functional equations) the instantons (or other topologi-
cally non-trivial field configurations) by hand to obtain a non-vanishimpkogical susceptibility.
The above comparison should, however, elucidate that adding to ateotisipproach some other
ingredients results in an incorrect treatment.

Accepting this, the following question arises: Where is the topological ptibdiéy encoded
in an approach based on Green’s functions? The decisive hint degifram the seventies [8]
(see also [9]). Rephrasing this old result in modern language one mayhetateomentum-space
Green’s function can reflect the topological susceptibility only in their nefledbehaviour because
only these are related to the boundary conditions in (Euclidean) space-time.

Emphasizing with this introductory remark the special role of the axial anomatyiirun-
derstanding of QCD let me give a short outline of the following sections:rAtertly reviewing
the knowledge on the infrared structure of Landau gauge Yang-Millsyhewill focus on the
positivity violation of the gluon propagator and potential implications for its aiasgructure. For
fundamental charges the corresponding gluon-matter vertex functierenalysed. Hereby it is
demonstrated that the quark-gluon vertex may play a key role in the issuead gonfinement.
The quark-gluon vertex is hereby twofold related in self-consistent sratandynamical chiral
symmetry breaking (RSB): On the one hand, its strength triggerg3$B, on the other hand it is
subject of DySB and contains components which are only possible duetsB A study of the
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infrared properties of fundamentally charged scalars provides esedibat within functional ap-
proaches static confinement is an universal property of the gautge sgen though it is formally
represented in the functional equations of the matter sédtast but not least, | will return to the
question of the description of the axial anomaly within functional appraache

2. Infrared Structure of Landau gauge Yang-Mills theory

The indefinite metric state space of a Yang-Mills theory can be classifieddiegao the
properties of the states under BRST transformationesggll, 12, 13]. The BRST cohomology
contains the physical states, the unphysical states form quartets. Gaitbts do exist either as
perturbative or non-perturbative ones [12, 14, 15]. One importgnédient in the construction of
a BRST quartet generated by transverse gluons is the fact that a “ges$fi transverse gluon
correlations needs to be generated, the massless transverse gluon states of perturbation the-
ory have to dissappear even though they should belong to quartets doiertamtiscreening and
superconvergence in QCD [16, 17]. Within this formulation one can peocaidlear distinction be-
tween the confinement and the Higgs phase: In the former the coloureckasgll-defined in the
whole state space, in the latter it is not. A condition which leads to such a wetledetharge can
be shown in Landau gauge by standard arguments employing functiamatiats and Slavnov-
Taylor identities to be equivalent to an infrared enhanced ghost pat@ad.8, 17] which in turn
then implies an infrared vanishing gluon propagator [19, 20, 21, 22£235]?

The implications of a broken colour charge are quite straightforward [h&ach channel in
which the gauge potential contains an asymptotic massive vector field the géalzge symmetry
generated by the colour charges is spontaneously broken. While thivemasstor state results to
be a BRST-singlet, the massless Goldstone boson states, which usuafljncg@mme components
of the Higgs field, replace the third component of the vector field in the elenyegtertet and
are thus unphysical. Since the broken charges are BRST-exact, tdenhsggmmetry breaking
is not observable in the Hilbert space of physical states. Thus, if thgegaoson is massive it
possesses three degenerate polarization states. Everything else saltbbn a surprise because
with respect to the representations of the Poincaré group there are anthbices:

e massive and three polarization states, or
e massless and two polarization states.

With this remarks in mind let us now analyse the situation in QC#&, (in the confinement
phase) and assume hereby either of the two types of solutions founcttiofual equations, namely
the scaling one with an infrared vanishing gluon propagator or the déogumes with an infrared
finite gluon propagator, for a description of the latter solutions see 2fs.28] and references
therein.

¢ Aninfrared vanishing gluon propagator has a vanishing screeninghlethg corresponding
screening “mass” is thus infinite. Nevertheless one would not attribute aiérgiuon mass.

IHowever, one has to note that the corresponding lattice results repgréectbMaas in this workshop [10] do not
corroborate this evidence.

2This so-called scaling solution of functional equations has been debatedimtensively recently. One should
note, however, that the violation of positivity for gluons is generally ambsee.g.[26].
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e Aninfrared finite gluon propagator has a finite screening length, thegonding screening
“mass” is therefore finite. However, accepting the positivity violation ofdvense gluons as
a fact the question arises in which sense this relates to adnass.

e Longitudinal and transverse gluons do not belong to the same BRSGegpation as there
is no doubt that in the confinement phase the longitudinal gluon belongs pethebative
elementary quartet. This implies that the longitudinal gluon stays a massless/$iosb)
state. Putting now the tranverse gluons into the same BRST represehtagiarly contra-
dicts the necessity of generating a “mass” gap for the transverse gluons.

e This is corroborated by the fact that glueballs (which are would-beiphlystates in pure
Yang-Mills theory) do not contain any contribution of longitudinal gluon@][2

The only possible conclusion from this is that longitudinal and transvéusagare not in the same
representation of the Poincaré group. A Poincaré representatiovéatar with two polarization
states is certainly not the representation for a massive vector.

To summarize this argument: Without the longitudinal polarization as part of dhe&é
representation of the transverse gluons my choice is to refrain from statefike “The gluon is
massive.” or phrases like “the gluon mass”, and this independent df thbavalue of the auto-
correlation function of excitations of transverse gluons at vanishingalityuk? = 0 is. To my
opinion, calling a gluon “massive” is confusing the issue of gluon confimeme

2.1 Infrared Exponents for Gluons and Ghosts

As already stated the infrared behaviour of the one-parameter familycotigéng solutions
is such that one obtains an infrared finite gluon propagator and otheindiaeed trivial Green'’s
functions [27, 28, 25]. The end-point of these solutions is the scaligiso. The infrared be-
haviour of all one-particle irreducible Green’s functions in the scalidgt®m is easily described
in the simplified case with only one external scpfe— 0: For a function witm external ghost and
antighost as well ash gluon legs one obtains [30, 31]

M(p?) ~ (p?) ", (2.2)

This solution fulfills all functional equations and all Slavnov-Taylor identitigsserifies the hy-
pothesis of infrared ghost dominance [32] and leads to infraredglivggB- and 4-gluon vertices.
There is only one unique scaling solution with power laws for the Greentstifans [33, 34].
A detailed comparison of both type of solutions can be foamgdin [25], an infrared analysis for
both type of solutions is describedg. in Ref. [35]. Although almost all lattice calculations of
the gluon propagator favor the decoupling solution it is certainly worthwhiktudy the scaling
solution as a theoretical tool. And there is the possibility that the differerteeska these solutions
depends on nothing else than a choice of gauge [36]. The latter inteéigmetacorroborated by
the fact that lattice studies at strong coupling [37, 38, 39] reveal théeexis of a regime where

3The clearest definition of mass in context of a relativistic quantum fieldytisthat mass is the square root of the
first quadratic Casimir invariant of the Poincaré gromp= /P, PH.
4BRST multiplets are degenerate as the BRST charge commutes with the Hiamilton



Confinement & SB in Fun. Approaches Reinhard Alkofer

the scaling relation between the gluon and the ghost propagator is fulfiiddha corresponding
infrared exponenk is very close to the value determined in a full class of truncated continuum
studies withk = 23=¢1201 ~ 0.59535.

2.2 Positivity violation of the gluon propagator

The positivity violation of the (space-time) propagator of transverse glasnpredicted by
the Oehme—Zimmermann superconvergence relation [16] and corrésgdadhe Kugo—-Ojima
[11] and Gribov—Zwanziger [32] scenarios has been a long-stamdingcture for which there is
now compelling evidence, seeg. Refs. [26, 40] and references therein. The basic features under-
lying these gluon properties, are the infrared suppression of cormeatictransverse gluons and
the infrared enhancement of ghost correlations as discussed abdh®@imple argument given by
Zwanziger makes this at least for the scaling solution obvious: An infreaishing gluon prop-
agator implies for the space-time gluon propagator being the Fourier tranefdhe momentum
space gluon propagator:

0= Dgiuon(k2 = 0) = / d* Dgiuon(X) . 2.2)

ThereforeDguon(X) has to be negative for some valueskoExactly this behaviour is seen in Fig. 1

20

10~

Figure 1: The Fourier transform of the scaling solution for the gluoogagator.

in which the Fourier transform of the scaling solution for the gluon profmaga displayed.
In order to investigate the analytic structure of the gluon propagator vigéirameterize the
running coupling such that the numerical results for Euclidean scales@n@duced [41]:

, as(0) 4w p? 1 !
e as0) - 23
iit(P°) 1+ pz//\SCD Bo /\%CD + p? In(pZ/A%CD) p2//\r23cD -1 (2.3)

with Bo = (1IN — 2N )/3. In this expression the Landau pole has been subtracted, it is analytic
in the complexp? plane except the real timelike axis where the logarithm produces a cudbr r
p? < 0, and it obeys Cutkosky’s rule.
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The infrared exponertt is an irrational number, and thus the gluon propagator possesses a
cut on the negative real® axis. It is possible to fit the solution for the gluon propagator quite
accurately without introducing further singularities in the comptéxplane. The fit to the gluon
renormalization function [40]

2

2K
Zit(p?) = w (/\ P ) (am(p?) " (2.4)

Gep + P2
works quite precisely. Hereby is a normalization parameter, agd= (—13N; + 4Ns) /(22N —
4N¢) is the one-loop value for the anomalous dimension of the gluon propagaedi3continuity
of (2.4) along the cut vanishes f@? — 0-, diverges to+ at p?> = —AZ., and goes to zero
for p>? — . The function (2.4) contains only four parameters: the overall magnitiighvdue to
renormalization properties is arbitrary (it is determined via the choice of tieemealization scale),
the scale\qcp, the infrared exponert and the anomalous dimension of the gluonThe latter
two are not free parameterg: is determined from the infrared properties of the DSEs and/for
its one-loop value is used. Thus we have found a parameterization of the glapagator which
has effectively only one parameter, the so&gy. It is important to note that the gluon propagator
possesses a form such thiick rotation is possible!

3. Quarks/Matter: Confinement vs. DYSB & U(1) anomaly

Due to the infrared suppression of the gluon propagator, present iscdimgand in the
decoupling solutions, quark confinement (or, generally, confinenfédahdamental charges) can-
not be generated by any type of gluon exchange together with inftamedded vertex functions.
Therefore it is mandatory to study the functional equations for the quapagator together with
the one for the quark-gluon vertex in a self-consistent way [42, 48]indportant difference of the
guarks as compared to Yang-Mills fields arises: As the former possesssa ama as RSB does
occur, the quark propagator will always approach a constant in tree éaf.

3.1 Dynamically induced scalar quark confinement

The fully dressed quark-gluon vertex consists of twelve linearly indég@nDirac tensors.
Half of the coefficient functions would vanish if chiral symmetry were redliin the Wigner-Weyl
mode. From a solution of the Dyson-Schwinger equations we infer thas tisealar” structures
are, in the chiral limit, generated non-perturbatively together with the dyraduapiark mass func-
tion in a self-consistent fashion. This implies the important result that dynhatizal symmetry
breaking manifests itself not only in the propagator but also in the quadaglertex.

From an infrared analysis one obtains an infrared divergent soluidhé quark-gluon vertex
such that Dirac vector and “scalar” components of this vertex are @drdivergent with exponent
—K —% if either all momenta or the gluon momentum vanish [43]. A numerical solution of a
truncated set of Dyson-Schwinger equations confirms this infrareavimir. The essential com-
ponents to obtain this solution are the “scalar” Dirac amplitudes of the quaokgertex and the
scalar part of the quark propagator. Both are only present wheal slyimmetry is broken, either
explicitely or dynamically.
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In order to determine how this self-consistent quark propagator arri{-glison vertex solu-
tion relates to quark confinement, the anomalous infrared exponent aduhgudiark function is
calculated. The static quark potential can be obtained from this foukqua-particle irreducible
Green function. In the scaling solution it behaves ljk8)~2 for p> — 0 due to the infrared en-
hancement of the quark-gluon vertex for vanishing gluon momentum. Usirdl-&nown relation
one obtains for the static quark-antiquark potential):

d°p 1

\V/ ~ il

0~ [ G

Therefore the infrared divergence of the quark-gluon vertexp@asd in the scaling solution of the

coupled system of Dyson-Schwinger equations, the vertex overcaatgsnthe infrared suppres-
sion of the gluon propagator such that one obtains a linearly rising potential.

0 Oépf ~ r| (3.1)
pl=

3.2 Fundamentally charged scalar field

Given the complications with the many tensor structures for quarks, aed ¢ie cost for
fermions on the lattice, it seems natural to use fundamentally charged saslaraboratory to
study confinement. In this context the scalar propagator and the sbater\gertex were investi-
gated on the lattice [44, 10] and analytically [45, 46, 47]. Different thargtiark Green’s functions
the tensor structure of the scalar ones is strongly simplified. Compared tmtwgonents in the
fermionic propagator, the scalar propagator features only a singléwguSimilarly the vertex
depending on two independent momenta can be decomposed into two témstersd( of twelve).

A scalar possesses self-interactions and therefore the number of taha®ipson-Schwinger
and Functional Renormalization Group equations is significantly increasgdhé derivation of
the Dyson-Schwinger equations one may employ the MATHEMATICA paekagDSE [48]. (A
package for Functional Renormalization Group equations will be publisbex [49].) In the uni-
form scaling limit, applying the constraints on the infrared exponents arisimg the comparison
of the inequivalent towers of Dyson-Schwinger and Functional Realization Group equations
[34], the system of equations for the anomalous exponents simplifies. lidaie®the scaling and
the decoupling solutions with an unaltered Yang-Mills sector. In the caseecfddling solution
for a massive scalar, the scalar-gluon vertex can show two distinctibeing[45, 46]. In the one
be discussed further it exhibits the same infrared exponent as the gjuarkvertex.

The uniform scaling uncovers only a small part of the potential infrankdecements. Vertex
functions may also become divergent when only a subset of the extaoménta vanish. Such
kinematic divergences provide a mechanism for the long-range intera¢tprarks as described in
the section above. Itis gratifying to realize that the kinematic divergeritke scalar-gluon vertex
are identical to those of the quark-gluon vertex. These singularitiesénalgonfining interaction
in the four-scalar vertex function as they did in the case of the fourkquextex function in the
case of scalar QCD. Their Fourier transform leads to a linearly rising piaténtial.

This result provides the possibility that within functional approaches statifirement is
an universal property of the gauge sector even though it is formalhgsepted in the functional
equations of the matter sector. Unfortunately, these results are nobomted by the lattice
results, see Refs. [44, 10] for more details.
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Figure 2: Contribution to the’ mass due to the infrared divergence of the product of quiubirgvertices
and gluon propagatof,,D*'I", O 1/(k+P/2)4,

3.3 Ua(1): n’ mass from infrared divergent Green functions

Based on purely dimensional arguments [8] one can conclude that therdiaiagram de-
picted in Fig. 2 supplies a non-vanishing contribution to the mass of the pseatfr flavor-singlet
meson in the chiral limit if the effective one-gluon-exchange diverges thighgluon-momentum
like 1/k*. As discussed above this is exactly the behaviour found in the scaling sofatithe
product of two quark-gluon vertices and the gluon propagator wheexttieanged gluons become
soft, 'y (p,g; K)DHV(K)Ty (r,sk) O 1/k*. An explicit calculation [50] verifies the corresponding
generation of a flavor-singlet mass. However, it has to be noted that¢harge of more than two
gluons also generate contributions to tfianass. As a matter of fact infinitely many diagrams con-
tribute. Under this aspect it reassuring that the diagram of Fig. 2 petddeading contribution.
Expressing the result in terms of the topological susceptiiiftpne obtaing(® = (160MeV)* as
compared to the phenomenological vajfe= (180MeV)* [50].

In this picture the infrared divergence of the quark-gluon vertex péaysmportant role in
a confinement-based explanation of the mass, the topological susceptibility and tbg(1)
anomaly. This provides evidence that the confining field configuratioQ®3i are topologically
non-trivial. For example, when removing center vortices from a latticerebles the string tension
vanishes and the Landau gauge ghost propagator becomes infippedssed [513.

The appearance of the correct infrared singularity in a single Feynmagmnadh is the case
only for the scaling solution. One may therefore speculate that for a giegisolution only a
resummation of infinitely many diagrams will be able to describe the axial anomaly.

4. Summary

The unique scaling and the family of decoupling solutions of the functionadtéans of Yang-
Mills theory have been presented. It has been conjectured that tharappe of several solutions
is related to the choice of gauge [36]. This would especially imply that all thelsgions give the
same values for physical observables.

A relatively simple form for the analytic structure of the gluon propagatsrieen suggested
[40]. It has the remarkable property that it allows a Wick rotation.

5For an introduction to confining field configurations seg. Refs. [52, 53].



Confinement & SB in Fun. Approaches Reinhard Alkofer

The quark-gluon vertex plays a double role in dynamical chiral symmetging: This
vertex triggers and is subject of the symmetry breaking [43]. This resufisginte complicated
Dirac structure of the static linearly rising quark potential. Analytical resattghfe scaling solution
for a fundamentally charged scalar exist [45]. However, lattice resalt®ticorroborate them [44].

The infrared singularities of the quark-gluon vertex for soft gluon mdmegenerate in the
scaling scenario an’ mass and the axial anomaly [50]. To my best knowledge, it is yet unknown
how the axial anomaly is encoded in the elementary Green'’s functions oétmeipling solution.

Acknowledgments

It is a pleasure to thank the organizers of this highly interesting worksirahéir respective
efforts. My special thanks goes to David Dudal for enabling finaneippsrt. | am grateful to
Christian Fischer, Leo Fister, Markus Huber, Felipe Llanes-Estragal Maas, Kai Schwenzer
and Lorenz von Smekal for collaborations on the research reported he

This work was supported in part by the Austrian Science Fund FWF ifrdgct No. P20592-
N16 and by the European Union (HadronPhysics2 project “Study afgly-interacting matter”).

References

[1] D.J. Gross and F. Wilczek, Phys. Rev. L&®.(1973) 1343.
[2] H.D. Politzer, Phys. Rev. LetB0(1973) 1346.
[3] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett4B (1973) 365.
[4] C. Vafa and E. Witten, Nucl. Phys. B34(1984) 173; Phys. Rev. Le%3(1984) 535.
[5] G.'t Hooft, Phys. Rev. D14 (1976) 3432 [Erratum-ibid. [.8 (1978) 2199].
[6] H. Leutwyler and A. V. Smilga, Phys. Rev. 46 (1992) 5607.
[7] S. R. Coleman, Subnucl. Sd15(1979) 805.
[8] J. B. Kogut and L. Susskind, Phys. Rev1D (1974) 3468.
[9] L. von Smekal, A. Mecke and R. Alkofer, arXiv:hep-ph/9210.
[10] A. Maas, PoFacesQCD(2011) 033 [arXiv:1102.0901 [hep-lat]].
[11] T. Kugo and I. Qjima, Prog. Theor. Phys. Supg8, 1 (1979).
[12] N. Nakanishi and I. Ojima, World Sci. Lect. Notes Ph2%.(1990) 1.
[13] L. von Smekal and R. Alkofer, arXiv:hep-ph/0009219.
[14] N. Alkofer and R. Alkofer, Po$acesQCD(2011) 043.
[15] N. Alkofer and R. Alkofer, arXiv:1102.2753 [hep-th].
[16] R. Oehme and W. Zimmermann, Phys. Rex2D471 (1980).
[17] R. Alkofer and L. von Smekal, Phys. Ref63(2001) 281 [arXiv:hep-ph/0007355].
[18] T. Kugo, arXiv:hep-th/9511033.
[19] L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. L&8.(1997) 3591 [arXiv:hep-ph/9705242].



Confinement & SB in Fun. Approaches Reinhard Alkofer

[20] P. Watson and R. Alkofer, Phys. Rev. L&&6(2001) 5239 [arXiv:hep-ph/0102332].

[21] D. Zwanziger, Phys. Rev. B5 (2002) 094039 [arXiv:hep-th/0109224].

[22] C. Lerche and L. von Smekal, Phys. Rev6B(2002) 125006 [arXiv:hep-ph/0202194].

[23] C. S. Fischer and R. Alkofer, Phys. Lett336(2002) 177 [arXiv:hep-ph/0202202].

[24] J. M. Pawlowskiet al., Phys. Rev. Lett93 (2004) 152002 [arXiv: hep-th/0312324].

[25] C.S. Fischer, A. Maas and J.M. Pawlowski, Ann. PI3&1(2009) 2408 [arXiv:0810.1987 [hep-ph]].
[26] P. O. Bowmaret al,, Phys. Rev. Ir6 (2007) 094505 [arXiv:hep-lat/0703022].

[27] A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Revz&(2008) 025010 [arXiv:0802.1870 [hep-ph]].
[28] P. Boucauckt al., JHEP0806(2008) 099 [arXiv: 0803.2161 [hep-ph]].

[29] V. Mathieu, POSQCD-TNTO09 (2009) 024 [arXiv:0910.4855 [hep-ph]]; talk given at thisrkshop.

[30] R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, Phg. B 611(2005) 279
[arXiv:hep-th/0412330].

[31] M. Q. Huberet al, Phys. Lett. B659(2008) 434 [arXiv:0705.3809 [hep-ph]].

[32] D. Zwanziger, Phys. Rev. B9 (2004) 016002 [arXiv: hep-ph/0303028].

[33] C. S. Fischer and J. M. Pawlowski, Phys. Rew5(2007) 025012 [arXiv:hep-th/0609009].

[34] C. S. Fischer and J. M. Pawlowski, Phys. Re\8@(2009) 025023 [arXiv:0903.2193 [hep-th]].
[35] R. Alkofer, M.Q. Huber, K. Schwenzer, Phys. Rev8ID(2010) 105010 [arXiv:0801.2762 [hep-th]].
[36] A. Maas, Phys. Lett. B89(2010) 107 [arXiv:0907. 5185 [hep-lat]];

[37] A. Sternbeck and L. von Smekal, Eur. Phys. B8%2010) 487 [arXiv:0811.4300 [hep-lat]].

[38] A. Maaset al,, Eur. Phys. J. ®8(2010) 183 [arXiv: 0912.4203 [hep-lat]].

[39] A. Cucchieri and T. Mendes, Phys. Rev8D(2010) 016005 [arXiv:0904.4033 [hep-lat]].

[40] R. Alkoferet al, Phys. Rev. Dr0(2004) 014014; [arXiv:hep-ph/0309077];
Nucl. Phys. Proc. Suppl41(2005) 122 [arXiv:hep-ph/0309078].

[41] C. S. Fischer and R. Alkofer, Phys. Rev63, 094020 (2003) [arXiv:hep-ph/0301094].

[42] R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, Mogd2bett. A23 (2008) 1105 [hep-ph/0607293].
[43] R. Alkoferet al, Annals Phys324(2009) 106 [arXiv: 0804.3042 [hep-ph]].

[44] A. Maas, Eur. Phys. J. €1(2011) 1548 [arXiv:1007.0729 [hep-lat]].

[45] L. Fister, R. Alkofer and K. Schwenzer, Phys. Lett688(2010) 237 [arXiv:1003.1668 [hep-th]].
[46] L. Fister, Diploma thesis, University Graz, 2009 [avXi002.1649 [hep-th]].

[47] R. Alkofer, L. Fister, A. Maas and V. Macher, arXiv:105831 [hep-ph].

[48] R. Alkofer, M. Q. Huber and K. Schwenzer, Comput. Physn®un.180(2009) 965
[arXiv:0808.2939 [hep-th]].

[49] M. Q. Huber and J. Braun, private communication.

[50] R. Alkofer, C. S. Fischer and R. Williams, Eur. Phys. J3&(2008) 53 [arXiv:0804.3478 [hep-ph]].
[51] J. Gattnar, K. Langfeld and H. Reinhardt, Phys. Rewvt.[9%8 (2004) 061601 [arXiv:hep-lat/0403011].
[52] R. Alkofer and J. Greensite, J. Phys3@ S3 (2007) [arXiv:hep-ph/0610365].

[53] J. Greensite, Lect. Notes Phy21(2011) 1.

10



