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1. Introduction

1.1 Overview

For some time now, there has existed a local, manifestly gauge invariant approach to QCD,
formulated directly in the continuum [1, 2, 3]. Whilst the scheme has been well tested perturba-
tively, its apparent complexity has impeded its widespreaduse. However, recent developments
in the understanding of the underlying formalism suggest that, in the near future, it will be prof-
itable to revisit this method, with the particular aim of realizing the original plan to apply it in the
strong-coupling domain.

The approach is based upon the Exact Renormalization Group (ERG) which, since its chris-
tening by Wilson & Kogut [4], has provided a robust approach to dealing with a wide range of
intrinsically nonperturbative problems [6, 7, 8, 9, 10, 11]. It is partly because of this success that
it is hoped that manifestly gauge invariant ERGs will have something to offer in the challenging
arena of the low energy physics of Yang-Mills.

Indeed, there has already been quite some success in applying the ERG to both pure Yang-
Mills and QCD. However, this has been achieved within an implementation where the cutoff fun-
damental to the approach breaks gauge invariance. Formally, this breaking disappears in the limit
that all quantum fluctuations are integrated out, though this property is spoiled by truncations nec-
essary to perform actual calculations. Nevertheless, the formalism is comparatively easy to use
and, moreover, one can hope to keep the errors induced by truncations under control. See [9] for a
balanced discussion of the pros and cons of the approach. From a practical perspective, the formal-
ism has given encouraging and impressive results, with someof the more recent ones described by
Pawlowski in [12] and these proceeding.

However, from a conceptual point of view, the advantages of an ERG equation for which gauge
invariance is preserved all the way along the flow are clear; that gauge invariance can even be left
manifest is an added bonus. The drawback, as mentioned above, is the complexity of the approach.
The game, then, is to attempt to simplify things to such a level where the benefits of manifest gauge
invariance win. Already, it has been understood that manifestly gauge invariant ERGs possess a
hidden simplicity [13, 14]. Now the task is to develop this further and, in particular, to understand
how to exploit it for nonperturbative calculations.

1.2 Why the Exact Renormalization Group?

The ERG grew out of the pioneering work of Wilson [4], and others, into the study of systems
exhibiting a large number of degrees of freedom per correlation length. Wilson realized that, so
long as the fundamental interactions are suitably local, then an understanding of such systems can
be built up by an iterated application of what is essentiallyKadanoff’s blocking procedure [15].
The logic is as follows. First, start by partitioning up the system of interest into small subsystems,
ideally containing just a few degrees of freedom. A selection of such subsystems is shown in the
first panel of figure 1. If the correlation length were small (i.e. the same as the characteristic size
of one of these subsystems), then we would essentially be done since the properties of the entire
system would be basically the same as those of a subsystem. However, we suppose that we are not
in this situation. To proceed, let us restrict ourselves to the case where the interactions are local;
in this case the subsystems essentially talk only to their neighbours. With this in mind, group the
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subsystems into blocks, as shown in the second panel of figure1. Now, since it is supposed that
each individual subsystem is easy to understand, in the sense that it possesses only a small number
of degrees of freedom, and that subsystems only talk to theirneighbours, we can hope ‘coarse-
grain’ over blocks, to give an effective description in terms of bigger subsystems, as indicated in
the final panel of figure 1. With this done, we have an understanding of the physics at the scale
of the coarse-grained subsystems, which is closer to the correlation length than where we started.
Moreover, once again, we have a description in terms of subsystems which are comparatively
easy to understand and which effectively only talk to their neighbours. The key point is that this
procedure can be iterated, allowing us to systematically build up an understanding of the system at
scales of order the correlation length.

Figure 1: Coarse-graining over subsystems in order to build up an understanding of systems with a large
number of degrees of freedom per correlation length. In the first panel, the system is divided up into sub-
systems. In the second panel, neighbouring subsystems are grouped together into ‘blocks’. Next, blocks are
coarse-grained to give a description of the system in terms of effective degrees of freedom.

With this compelling picture in our minds, let us emphasise that the coarse-graining is not
done at the level of physical samples. Rather, the idea is to coarse-grain over degrees of freedom
within the partition function, thereby obtaining a succession of actions which provide effective
descriptions of the physics at the appropriate scale.

1.3 Applying the Exact Renormalization Group to Quantum Field Theory

We have learnt that the ERG is of use for describing systems exhibiting both a large number of
degrees of freedom per correlation length and locality. Consequently, it is reasonable to apply the
formalism in the context of quantum field theory, which we formulate ind Euclidean dimensions.

The starting point is the partition function, which we suppose to possess some overall cutoff,
Λ0 (the bare scale). We now consider integrating out degrees offreedom down to some effective
scale,Λ, such that the partition function remains the same. During this process, the bare action
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evolves into the Wilsonian effective action,SΛ. Of course, for this to work, the Wilsonian effective
action must satisfy a consistency condition, which is encoded in an ERG equation. This equation
tells us howSΛ changes under infinitesimal changes of the scale, viz.

−Λ∂ΛSΛ = . . .

The form of the right-hand side will depend on the precise wayin which we coarse-grain over
degrees of freedom. The presence of this flexibility, which will be discussed further below, should
be clear from figure 1: the choice to group subsystems into 2×2 blocks was an arbitrary one, and
this arbitrariness is one manifestation of the freedom to choose different coarse-graining schemes.

Before giving technical details, let us note that we can immediately detect a potential difficulty
in applying this approach to gauge theories. A central element of the ERG is a cutoff, which
partitions modes into those of high and low energies. However, for gauge theories, one needs to be
careful since a naïve partitioning is not gauge invariant (except in the largely uninteresting case of
pure Abelian gauge theory). To rectify this problem amountsto finding a regularization of gauge
theory based on a cutoff. Fortunately, such a scheme—which combines covariant higher derivative
and Pauli-Villars regularizations—has been constructed [16, 3], as we will recall below.

2. Exact Renormalization Group Equations

2.1 General Considerations

There are several different routes to obtaining ERG equations. In order to be sympathetic to
the discussion above, we will highlight the role played by blocking. Starting at the bare scale, let
us denote our bare field byϕ0 (we need not suppose that this is a scalar field). We now introduce
the ‘blocking functional’,bΛ, which serves to coarse-grain degrees of freedom over patches with a
characteristic size 1/Λ. Thus, the blocked field,ϕ , is written as

ϕ(x) = bΛ[ϕ0](x). (2.1)

A sensible choice would bebΛ[ϕ0](x) = Λd ∫ddy f ((x−y)Λ)ϕ0(y), where f (zΛ) decays rapidly for
zΛ > 1. However, there are many other valid choices forb: indeed, there is no need for the blocking
to be linear in the field.

Of course, the fact that blocking is performed over patches of finite size introduces a degree
of non-locality. However, there are strong restrictions onthe type of non-locality allowed. In
particular, in the limitΛ→∞, everything must become strictly local. More generally, inmomentum
space,f (p2/Λ2) is, for small argument, required to be analytic. Such behaviour is referred to as
quasi-locality and is a crucial property of the Wilsonian effective action: generally speaking, we are
interested in solving the ERG equation subject to the condition that the solutions are quasi-local.

By insisting on quasi-locality, we ensure that, for theories which are renormalizable in the
Wilsonian sense, the Wilsonian effective action encodes the physics of alocal QFT. This can be
understood as follows. Renormalizability implies that we can take the limitΛ → ∞. But in this
limit, quasi-locality ensures that the action becomes strictly local. Now, recall that things are set
up such that the partition function is invariant under the flow. Therefore, the Wilsonian effective
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action at the scaleΛ describes precisely the same partition function as the local action in the deep
ultraviolet (UV) limit, where the flow is spawned.

To complete the picture, note that ‘genuine’ non-locality (in the sense of non-analyticity) is
permitted to arise in the limitΛ → 0. This makes sense. In this limit, we have integrated out all
quantum fluctuations and, moreover, expect the partition function to contain information about the
correlation functions (which is, of course, most readily extracted in the presence of a source). Of
course, it is quite permissible for correlation functions to be non-local. Note, though, that for any
Λ > 0, we have not yet integrated out all quantum fluctuations. This is equivalent to saying that the
modes belowΛ have been suppressed, which can be understood in terms of an infrared (IR) cutoff.
Only in the limit that this cutoff is removed do we expect non-locality (as opposed to quasi-locality)
to emerge. Below, we will give an explicit example of a solution to the flow equation exhibiting
this transition from strict locality to quasi-locality to non-locality.

The aim now is to go from the blocking functional to an explicit ERG equation. First of all, let
us note from (2.1) that we can relate the Wilsonian effectiveaction to the bare action as follows:

e−SΛ[ϕ ] =

∫

Dϕ0 δ
[

ϕ −bΛ[ϕ0]
]

e−SΛ0 [ϕ0]. (2.2)

Now, rather than specifyingbΛ explicitly, it turns out to be more convenient to do so implicitly, via

Ψ(x)e−SΛ [ϕ ] =
∫

Dϕ0 δ
[

ϕ −bΛ[ϕ0]
]

Λ
∂bΛ[ϕ0](x)

∂Λ
e−SΛ0

[ϕ0], (2.3)

which serves as a definition ofΨ. From this, it follows that

−Λ∂Λe−SΛ[ϕ ] =
∫

ddx
δ

δϕ(x)

{

Ψ(x)e−SΛ [ϕ ]
}

, (2.4)

where the derivative with respect toΛ is performed at constantϕ . Thus, the freedom to choose the
blocking functional,bΛ, has been translated into a choice ofΨ. It is worth noting that this equation
can alternatively be derived by supposing that, under an RG stepΛ → Λ−δΛ, the field is redefined
according toϕ → ϕ − δΛ/ΛΨ. This relationship between ERG equations and field redefinitions
was first noticed by Wegner [5] and later explored by Latorre and Morris [17], in particular.

To summarize, equation (2.4) serves as our template for constructing ERG equations. Before
diving into gauge theory, we will recall a particularly useful choice ofΨ in scalar field theory,
which we will subsequently generalize.

2.2 Scalar Field Theory

The flow equations we will deal with have the same basic structure as Polchinski’s [18]. With
this in mind, let us introduce a UV cutoff functionK(p2/Λ2), taken to die off rapidly for large
argument and also exhibiting quasi-locality. The normalization is chosen such thatK(0) = 1. Next
let us define an object which looks like a UV regularized propagator:

CΛ(p2)≡
K(p2/Λ2)

p2 . (2.5)

We will return to the interpretation ofC below, which can be subtle even in scalar field theory. It
is now convenient to split up the action (which in this section we take as a functional of the scalar
field, φ ) according to

SΛ[φ ] = ŜΛ[φ ]+SI
Λ[φ ] (2.6)
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where, for the time being, we take

ŜΛ[φ ] =
1
2

φ ·C−1
Λ ·φ =

∫

dd p
(2π)d φ(−p)C−1

Λ (p2)φ(p). (2.7)

DefiningĊ ≡−ΛdCΛ/dΛ and
ΣΛ[φ ]≡ SΛ[φ ]−2ŜΛ[φ ], (2.8)

Polchinski’s equation follows from the choice

Ψ(p) =
1
2

ĊΛ(p2)
δΣΛ[φ ]
δφ(−p)

, (2.9)

which yields the flow equation

−Λ∂ΛSΛ[φ ] =
1
2

δS
δφ

·ĊΛ ·
δΣ
δφ

−
1
2

δ
δφ

·ĊΛ ·
δΣ
δφ

. (2.10)

We are now in a position to interpretC. First and foremost, note thaṫC is quasi-local and
incorporates a UV cutoff function, giving a well defined flow equation. Indeed, from the point of
view of the flow equation, it iṡC—referred to as an ERG kernel—and notC which is the primitive
object. After solving the flow equation, we look at the two-point vertex ofS and then interpretC
appropriately. For example if there are no contributions tothe two-point vertex ofSI until O

(

p4
)

,
then it makes sense to think ofC simply as the UV regularized propagator. However, it is quite
permissible forSI to contain a mass term, in which case we should change our interpretation appro-
priately. More severely, it is quite permissible for the solution toSI to precisely cancel the O

(

p2
)

part of the integrand in the ‘kinetic term’̂S = 1
2φ ·C−1

Λ ·φ . Of course, the resulting theory will not
be unitary after continuation to Minkowski space, but this is beside the point; rather, we wish to
emphasise that it is naïve to simply state thatCΛ is a UV regularized propagator. This issue will be
sharpened in gauge theory where we will not fix the gauge and socannot define the propagator!

Before moving on, let us note that it is simple to introduce source terms into the action, which
is natural if one wants to compute correlation functions (ofthe fundamental field and/or composite
operators). Indeed, we can achieve this simply by making thereplacementSΛ[φ ]→ SΛ[φ ,J], where
J stands for some set of sources. The corresponding operatorsto which these sources couple can be
specified via a boundary condition for the bare action. It is easy to check that a source-dependent
solution to (2.10) is

SI
Λ[φ ,J] =−

∫

dd p
(2π)d

[

J(p)φ(p)+
1
2

J(−p)
1−K(p2/Λ2)

p2 J(p)

]

. (2.11)

Part of the motivation for showing this solution is that it very nicely illustrates the various concepts
of locality delineated earlier. First, recalling thatK(0) = 1, note that in the limitΛ → ∞, the action
becomes strictly local (and possesses the source termJ ·φ ). For 0<Λ<∞, the action is quasi-local;
this follows because, in the final term,K(p2/Λ2) = 1+O

(

p2/Λ2
)

. But in the limitΛ→ 0 the cutoff
function disappears, yielding a non-local term. As alludedto above, this is hardly suprising. It has
been shown in [11] that limΛ→0SI

Λ[0,J] generates the connected correlation functions of whatever
is coupled in the UV. Here we are dealing with the Gaussian theory coupled toJ ·φ ; and we simply
recover the result that the two-point connected correlation function goes like 1/p2.
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2.3 Yang-Mills Theory

2.3.1 The Setup

To construct ERGs for which gauge invariance is preserved along the flow, we require a gauge
invariant cutoff. A beautiful solution to this problem was found in [16] for SU(N) Yang-Mills. The
idea is to embed the physical gauge theory into a spontaneously broken SU(N|N) gauge theory,
regularized by covariant higher derivatives. Were covariant higher derivative regularization applied
solely to SU(N) Yang-Mills then, as has been known for a long time, a set of one-loop divergences
slip through. However, SU(N|N) Yang-Mills has sufficiently improved UV properties to cure this.

The embedding is as follows. Denoting the physical gauge field byA1
µ and the SU(N|N) super

gauge field byAµ , we can write

Aµ =

(

A1
µ Bµ

B̄µ A2
µ

)

+A
0

µ 1, (2.12)

whereA2
µ carries an unphysical SU(N) theory (which turns out to come with a wrong-sign kinetic

term), Bµ and B̄µ are wrong-statistics fermions and the final contribution isa central term. In-
troducing a superscalar field,C , with a vev such that the fermions acquire a mass, the SU(N|N)

symmetry is broken down to SU(N)×SU(N)×U(1). The symmetry breaking scale is chosen to
be Λ, the same as the scale of the covariant higher derivatives. As shown in [16], this scheme
regularizes all Feynman graphs. Moreover, it was also established that the necessary decoupling
properties are satisfied in order that a regularization of the physical SU(N) is achieved. To be
precise, in the limitΛ → ∞ the fermions decouple. Furthermore, the lowest gauge invariant inter-
action betweenA1

µ andA2
µ is of the form

∫

ddx tr (F1)2tr(F2)2, (whereF1,2 are the corresponding
field strength tensors) which, on dimensional grounds, comes with a factor 1/Λd . Therefore, the
unphysical SU(N) decouples from the physical one in the limitΛ → ∞. Consequently, so long as
we pose questions of only the physical sector (e.g. by computing the flow of the physical gauge
coupling, or computing correlators involving only the physical field) then we are guaranteed that
the effects of the unphysical fields merely amount to providing regularization. As for the central
term, it turns out thatA 0

µ can and should be entirely removed from the action; the interested reader
is referred to [2]. The regularization was extended to include quarks in [3].

With the regularization scheme in place, we can now construct our flow equation. The idea
is to use the template (2.10) but with several modifications appropriate to gauge theory. First, of
all, we replace the fieldφ with ϕi, wherei runs over all fields in the broken phase of SU(N|N),
embedded in a supermatrix. Thus, the component ofϕi corresponding toA1 stands for diag(A1,0).
We must allow for a separate kernel,Ċ, for each propagating field. To denote this, we label the
kernels by the fields, so that e.g.ĊA1A1

is the kernel appropriate to the physical gauge field. Next,
we reinterpretŜ, which was previously given by (2.7). Returning to (2.4), recall that we are free
to make any choice ofΨ, so long as it leads to a well defined flow equation. Therefore,we are
quite entitled to furnisĥS with interactions, in order to render it gauge invariant. Inactual fact, for
various technical reasons discussed in [1, 19], it is necessary to go beyond the minimal choice and
actually allow for a rather generalŜ. With this done, we retain the definition ofΣ given in (2.8),
noting that this object is now gauge invariant.
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However, we are still not done. Notice that the flow equation involves the object

δ
δϕi

·Ċϕiϕ j ·
δ

δϕ j
=

∫

ddxddy
δ

δϕi(x)
Ċϕiϕ j(x− y)

δ
δϕi(y)

(2.13)

(with an implied sum over repeated indices) which is not gauge invariant, due to the functional
derivatives being at different points. This can be rectifiedby covariantizing the kernels, which
essentially amounts to furnishinġCϕiϕ j(x− y) with vertices: just as the vertices of the Wilsonian
effective action are related to each other by gauge invariance identities, so too are the vertices of
the kernels. Denoting a covariantization via{}, we can write (suppressing Euclidean indices)

δ
δϕi

{Ċϕiϕ j}
δ

δϕ j
=

∑
n,m

∫

ddxddyddx1 · · ·d
dxn ddy1 · · ·d

dym Ċϕi1···ϕin ,ϕ j1 ···ϕim ;ϕiϕ j(x1, . . . ,xn,y1, . . . ,ym;x,y)

str

[

δ
δϕi(x)

ϕi1(x1) · · ·ϕin(xn)
δ

δϕi(y)
ϕ j1(y1) · · ·ϕ jm(ym)

]

, (2.14)

where str is the cyclic invariant for SU(N|N), consisting of the trace of the upper leftN ×N block
of a supermatrix minus the trace of the lower rightN ×N block. The term withn = m = 0 involves
the underlying kernel and the higherĊϕi1 ···ϕin ,ϕ j1 ···ϕim ;ϕiϕ j are the vertices which, beyond satisfying
gauge invariance identities, can be taken to be general up tosome restrictions described in [1].

Before giving the flow equation, let us recall that it is convenient to rescaleAµ → Aµ/g, so
that the covariant derivative becomes∇µ = ∂µ − iAµ . Now, under gauge transformations, we have
δωAµ = [∇µ ,ω ]. Since we anticipate that we never fix the gauge, this is a manifest symmetry of
the theory. Consequently, it is easy to check thatAµ cannot renormalize, which would amount to
sendingAµ →AµZ(Λ), as first noted in [20]. It turns out that this property is inherited by all fields
in the broken phase [1, 2]. There is, however, an apparent drawback: the rescalingAµ → Aµ/g
causes an extra term to appear on the left-hand side of the flowequation, after rewriting it in terms
of Λ∂Λ taken at constant rescaled field, which is not manifestly gauge invariant [20]. The solution
is to tuneΨ to absorb this term. Finally, then, the flow equation takes the deceptively simple form

−Λ∂ΛS[ϕ ] =
1
2

δS
δϕi

{g2Ċϕiϕ j}
δΣ
δϕ j

−
1
2

δ
δϕi

{g2Ċϕiϕ j}
δΣ
δϕ j

. (2.15)

At no point in the construction of this equation has the gaugebeen fixed; the formalism is manifestly
gauge invariant. Note that we can take this flow equation to define what we mean by the partition
function in the absence of gauge fixing.

Let us now return to the issue of the interpretation of the integrated kernels. In theA1 sector,
we can choosėCA1A1

to be essentially the same as for scalar field theory, corresponding to

CA1A1

µ ν (p2) = δµν
K(p2/Λ2)

p2 . (2.16)

This looks like a regularized Feynman propagator, which is perhaps rather mysterious since we
claim not to have fixed the gauge. However, consider focussing on theA1 sector and pulling out
the two-point term:

S[ϕ ] =
1
g2 A1

µ ·
(

D−1)A1A1

µ ν ·A1
ν + . . . (2.17)

8
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Substituting this into the flow equation, it is easy to check that

(

D−1)A1A1

µ α (p)CA1A1

α ν (p2) = p2δµν − pµ pν . (2.18)

Therefore, the integrated kernel is the inverse of the kinetic term in the transverse space. Thus
despite appearances, the integrated kernel should not be interpreted as a propagator in the standard
sense. Nevertheless, from a diagrammatic perspective [1, 13] in particular it plays a rather similar
role and so is often referred to as an effective propagator.

3. Results to Date & Outlook

All quantitative work that has been done so far with the manifestly gauge invariant flow equa-
tion has been perturbative. Whilst the aim of constructing the formalism is to provide a nonpertur-
bative tool, it is of course essential to test a local, continuum approach that makes so grand a claim
as to be manifestly gauge invariant. Even before the SU(N|N) regularization scheme was fully
understood, it was possible to compute the one-loopβ -function in pure SU(N) Yang-Mills [21].
Subsequent to the details of the regularization being fleshed out, this computation was redone and
greatly refined [1]. The main improvement was to recognize that much of the calculation could be
done without ever specifying the details of either theŜ or the covariantization of the kernels. These
techniques were further refined [2], paving the way for the successful computation of the two-loop
result in [19], thereby providing a highly non-trivial testof the formalism.

Nevertheless, despite the enhanced understanding of the formalism, the two-loop calculation
was something of a nightmare, involving as it did the generation of thousands of terms, most of
which cancelled identically to leave a small set from which the final answer was extracted. Subse-
quently, it was realised that many of these cancellations can be done in parallel [22]; following on
from this, a diagrammatic expression was derived, to all loops, for the surviving terms [13]. This
represents a colossal improvement over the original two-loop calculation and, indeed, reduces the
complexity to something similar to a more standard calculation. Building on this, it was shown
that the expectation value of a long, thin, rectangular Wilson loop can be easily computed without
gauge fixing [23]. When the formalism was extended to QCD [3],the one-loopβ -function was
computed with the minimum of fuss.

Up to this point, the simplifications uncovered were rooted in perturbation theory. A step
towards going beyond this was given in [14], representing the last piece of work, to date, using
the formalism. Recently, however, there have been substantial advances in the understanding of the
structure of flow equations [11]. In the context of scalar field theory, this has allowed several results
to be derived without any truncation (or diagrammatic expansion), including a demonstration that
the spectrum of the anomalous dimension at critical fixed-points is quantized [11] and a proof of
an extension of Pohlmeyer’s theorem [24]. It is clear that these insights into the flow equation can
be used to place [14] on a proper footing, that no longer makesany reference to diagrammatics.

Coming from a somewhat different direction, a compelling qualitative picture for a confine-
ment mechanism has been presented in [25]. As part of this, itis observed that in any manifestly
gauge invariant formulation of Yang-Mills, the gluon cannot have a mass gap. Intuitively, then, one
might expect that,in this manifestly gauge invariant picture, confinement is driven byg diverg-
ing in the IR. This suggests that it might be profitable to perform an expansion in 1/g2 but where
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it should be emphasised that thisg is the renormalized and not the bare coupling. As discussed
in [25], the scheme has attractive features. However, thereis a severe problem: notice the explicit
factors ofg2 appearing in the flow equation (2.15); whilst they guaranteeclosure of perturbation
theory, they have the opposite effect in a strong coupling expansion. Therefore, to use the strong
coupling expansion, either some resummation or further approximation must be performed.

There has been no investigation into either of these choices, partly due to the daunting com-
plexity of the flow equation once one looks under the bonnet. However, as intimated above, the
understanding of the flow equation is much better than when these issues were first considered. This
is, therefore, the right time to return to the manifestly gauge invariant ERG, aiming to combine the
physical insights made some time ago with the technical advances made more recently.
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