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1. Introduction

There has been a revised interest in studying instantons at finite temperatureT , so-called
calorons [1, 2], because new explicit solutions could be obtained where the Polyakov loop at spatial
infinity (the so-called holonomy) is non-trivial. They reveal more clearly the monopole constituent
nature of these calorons [3]. Non-trivial holonomy is therefore expected to play a role in the con-
fined phase (i.e. forT < Tc) where the trace of the Polyakov loop fluctuates around smallvalues.
The properties of instantons are therefore directly coupled to the order parameter for the deconfin-
ing phase transition.

At finite temperatureA0 plays in some sense the role of a Higgs field in the adjoint rep-
resentation, which explains why magnetic monopoles occur as constituents of calorons. Since
A0 is not necessarily static it is better to consider the Polyakov loop as the analog of the Higgs
field, P(t,~x) = Pexp

(

∫ β
0 A0(t + s,~x)ds

)

, which transforms under a periodic gauge transformation

g(x) to g(x)P(x)g−1(x), like an adjoint Higgs field. Hereβ = 1/kT is the period in the imag-
inary time direction, under which the gauge field is assumed to be periodic. Finite action re-
quires the Polyakov loop at spatial infinity to be constant. For SU(n) gauge theory this gives
P∞ = lim|~x|→∞ P(0,~x) = g† exp(2πidiag(µ1,µ2, . . . ,µn))g, whereg bringsP∞ to its diagonal form,
with n eigenvalues being ordered according to∑n

i=1 µi = 0 andµ1 ≤ µ2 ≤ . . .≤ µn ≤ µn+1 ≡ 1+µ1.
In the algebraic gauge, whereA0(x) is transformed to zero at spatial infinity, the gauge fields satisfy
the boundary conditionAµ(t + β ,~x) = P∞Aµ(t,~x)P−1

∞ .
Caloron solutions are such that the total magnetic charge vanishes. A single caloron with

topological charge one containsn − 1 monopoles with a unit magnetic charge in thei-th U(1)
subgroup, which are compensated by then-th monopole of so-called type(1,1, . . . ,1), having a
magnetic charge in each of these subgroups.[4] At topological chargek there arekn constituents,k
monopoles of each of then types. Monopoles of typej have a mass 8π2ν j/β , with ν j ≡ µ j+1−µ j.
The sum rule∑n

j=1ν j =1 guarantees the correct action, 8π2k.
Prior to their explicit construction, calorons with non-trivial holonomy were considered irrel-

evant [2], because the one-loop correction gives rise to an infinite action barrier. However, the
infinity simply arises due to the integration over the finite energy density induced by the pertur-
bative fluctuations in the background of a non-trivial Polyakov loop [5]. The calculation of the
non-perturbative contribution was performed in [6]. When added to this perturbative contribution,
with minima at center elements, these minima turn unstable for decreasing temperature right around
the expected value ofTc. This lends some support to monopole constituents being therelevant de-
grees of freedom which drive the transition from a phase in which the center symmetry is broken
at high temperatures to one in which the center symmetry is restored at low temperatures. Lattice
studies, both using cooling [7] and chiral fermion zero-modes [8] as filters, have also conclusively
confirmed that monopole constituents do dynamically occur in the confined phase.

2. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arrangeβ = 1, as will be assumed through-
out. A remarkably simple formula for the SU(n) action density exists [4],

TrF 2
αβ (x) = ∂ 2

α∂ 2
β logψ(x), ψ(x) = 1

2tr(An · · ·A1)−cos(2πt),
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Am ≡
1
rm

(

rm |~ρm+1|

0 rm+1

)(

cosh(2πνmrm) sinh(2πνmrm)

sinh(2πνmrm) cosh(2πνmrm)

)

,

with rm ≡ |~x−~ym| and~ρm ≡~ym −~ym−1, where~ym is the location of themth constituent monopole
with a mass 8π2νm. Note that the indexm should be considered modn, such that e.g.rn+1 = r1 and
~yn+1 =~y1 (there is one exception,µn+1 = 1+ µ1). It is sufficient that only one constituent location
is far separated from the others, to show that one can neglectthe cos(2πt) term inψ(x), giving rise
to a static action density in this limit [4].

Figure 1: Shown are three charge one SU(2) caloron profiles att = 0 with β = 1 andρ = 1. From left to
right for µ2 = −µ1 = 0 (ν1 = 0,ν2 = 1), µ2 = −µ1 = 0.125 (ν1 = 1/4,ν2 = 3/4) andµ2 = −µ1 = 0.25
(ν1 = ν2 = 1/2) on equal logarithmic scales, cutoff below an action density of 1/(2e).

In Fig. 1 we show how for SU(2) there are two lumps, except thatthe second lump is absent
for trivial holonomy. Fig. 2 demonstrates for SU(2) and SU(3) that there are indeedn lumps (for
SU(n)) which can be put anywhere. These lumps are constituent monopoles, where one of them
has a winding in the temporal direction (which cannot be seenfrom the action density).

Figure 2: On the left are shown two charge one SU(2) caloron profiles att = 0 with β = 1 and
µ2 = −µ1 = 0.125, for ρ = 1.6 (bottom) and 0.8 (top) on equal logarithmic scales, cutoffbelow an ac-
tion density of 1/(2e2). On the right are shown two charge one SU(3) caloron profiles at t = 0 and
(ν1,ν2,ν3) = (1/4,7/20,2/5), implemented by(µ1,µ2,µ3) = (−17/60,−1/30,19/60). The bottom con-
figuration has the location of the lumps scaled by 8/3. They are cutoff at 1/(2e).

2.1 Fermion Zero-Modes

An essential property of calorons is that the chiral fermionzero-modes are localized to con-
stituents of a certain charge only. The latter depends on thechoice of boundary condition for
the fermions in the imaginary time direction (allowing for an arbitrary U(1) phase exp(2πiz)) [9].
This provides an important signature for the dynamical lattice studies, using chiral fermion zero-
modes as a filter [8]. To be precise, the zero-modes are localized to the monopoles of type
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m provided µm < z < µm+1. Denoting the zero-modes bŷΨz(x), we can writeΨ̂†
z (x)Ψ̂z(x) =

−(2π)−2∂ 2
µ f̂x(z,z), where f̂x(z,z′) is a Green’s function which forz∈ [µm,µm+1] satisfiesf̂z(z,z) =

π <vm(z)|Am−1 · · ·A1An · · ·Am|wm(z)> /(rmψ), where the spinorsvm and wm are defined by
v1

m(z) = −w2
m(z) = sinh(2π(z−µm)rm), andv2

m(z) = w1
m(z) = cosh(2π(z−µm)rm).

To obtain the finite temperature fermion zero-mode one putsz = 1
2, whereas for the fermion

zero-mode with periodic boundary conditions one takesz = 0. From this it is easily seen that in
case of well separated constituents the zero-mode is localized only at~ym for which z ∈ [µm,µm+1].
To be specific, in this limitf̂x(z,z)= π tanh(πrmνm)/rm for SU(2), and more generallŷfx(z,z)=

2π sinh[2π(z−µm)rm]sinh[2π(µm+1−z)rm]/ (rm sinh[2πνmrm]). We illustrate in Fig. 3 the local-
ization of the fermion zero-modes for the case of SU(3).

Figure 3: For the SU(3) configuration in the lower right corner of Fig. 2we have determined on the left the
zero-mode density for fermions with anti-periodic boundary conditions in time and on the right for periodic
boundary conditions. They are plotted at equal logarithmicscales, cut off below 1/e5.

2.2 Calorons of Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formalism [10], both in making
powerful approximations, like in the far field limit (based on our ability to identify the exponentially
rising and falling terms), and for finding exact solutions through solving the homogeneous Green’s
function [11]. We found axially symmetric solutions for arbitrary k, as well as fork = 2 two sets
of non-trivial solutions for the matching conditions that interpolate between overlapping and well-
separated constituents. For this task we could make use of anexisting analytic result for charge-2
monopoles [12], adapting it to the case of carolons. An example is shown in Fig. 4.

3. More recent results

There are more recent lectures by Bruckmann [13] and Diakonov [14]. Also, Diakonov and
Petrov made some progress on constructing the hyperKähler metric which approximates the metric
for an arbitrary number of calorons. They claim that this already gives confinement [14, 15].
But some cautionary remarks can be made [16]. Also multi-calorons were revisited [17], and the
authors claim to have the full SU(2) moduli space fork = 2.

The calorons have also adjoint fermionic zero-modes, and they are now known in analytical
form [18]. Finally, Ünsal has published a paper concerning the mechanism of confinement in QCD-
like theories [19], for example SU(2) with 1≤ n f ≤ 4 adjoint Majorana fermions. He argues that
there are BPS and KK monopoles (precisely the constituents of the caloron), which have zero-
modes under the adjoint fermions. They then make BPS-KK bound states (instead of BPS-KK).
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Figure 4: In the middle is shown the action density in the plane of the constituents att = 0 for an SU(2)
charge 2 caloron with trP∞ = 0, where all constituents strongly overlap. On a scale enhanced by a factor
10π2 are shown the densities for the two zero-modes, using eitherperiodic (left) or anti-periodic (right)
boundary conditions in the time direction.
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