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1. Introduction

One of the preeminent puzzles in modern astrophysics concerns the nature and origin of cosmic
rays. These particles arrive at the top of the Earth’s atmosphere with energies extending from
∼ 109 eV up to ∼ 1020 eV. There are also particles with less than 109 eV, but their spectrum is
not well known because their flux is strongly reduced by the effect of the solar wind. Important
information about cosmic rays come from the observation of the energy distribution of the particles.
Let N(E)dE be the number of cosmic rays in the energy interval dE. The observed energy spectrum
N(E) behaves as a power law, N(E)∼ E−γ , where γ is:

γ = 2.7 for 109eV < E < Eknee,
γ = 3.0 for Eknee < E < Eankle,
γ = 2.7 for Eankle < E < EGZK ,

being Eknee ≈ 1016 eV, Eankle ≈ 4×1018 eV and EGZK ≈ 6×1019 eV. Extensive air shower exper-
iments (e.g. AUGER, HiRes) show that above EGZK the spectrum falls off. This is interpreted as
a consequence of the energy loss (pion production) of cosmic rays as they interact with photons of
the cosmic microwave background.

The charged primary particles of cosmic rays consist of ∼ 89% of protons, ∼ 10% of heavier
nuclei (mainly alpha particles), and ∼ 1% electrons. There are also very small proportions of
positrons, antiprotons, muons, pions and kaons generated by interactions of the primary particles
with the interstellar gas. Additionally, there are γ-rays and neutrinos and antineutrinos.

An essential ingredient for the acceleration and propagation of cosmic rays is the cosmic mag-
netic field. Magnetic fields are widely encountered in astrophysical environments: planets, stars,
the interstellar medium, galaxies, the intergalactic medium and the large scale Universe are all
permeated by them. In contrast, electric fields are not so easy to find. Since most of the matter
in the Universe is in the plasma state, electric fields are screened on scales of the order of the
Debye length. Therefore, electric fields can be encountered on some compact regions such as the
polar caps of neutron stars or reconnection zones in stellar coronae or accretion disks, but are not
expected on large scales.

Most cosmic rays are produced and accelerated within the galaxy and then propagate through
galactic medium before arriving to the Earth. However, the fact that some particles attain E ∼ EGZK

indicates that at least part of them could be of extragalactic origin, since the galactic magnetic field
cannot retain them. Actually, the hardening of the spectrum above Eankle is indicative of an extra-
galactic origin of these particles.

While our knowledge of the galactic and extragalactic magnetic fields is still far from com-
plete, there has been a significant progress in the last years and a large wealth of information is
expected in the near future with the advent of the SKA array (see [1]). In recent years the magnetic
field of several galaxies has been observed showing that fields with a well-ordered spiral structure
exist in many types of galaxies (see e.g. [2, 3]). In general, interstellar magnetic fields are stronger
in massive spiral arms and in nuclear starburst regions. For edge-on galaxies, radio polarization
measurements show the existence of magnetic halos extending few kiloparsecs above and below
the galactic disks. Inside the Milky Way, the diffuse interstellar medium, molecular clouds, and
HII regions, are all permeated by magnetic fields. Rotation measures and dispersion measures of
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pulsars show that the Galactic large-scale magnetic fields are aligned with the spiral arms. There
are multiple reversals of the field direction as one moves from the innermost arm to the outer arm.
The average strength of the local regular field is in the range of few µG. On smaller scales, the
fields are enhanced when interstellar gas contracts to form a cloud, i.e. the observed field strength
increases with gas density. Additionally, there is a turbulent field whose amplitude is thought to be
larger than the regular one, with a coherence length of roughly 100 parsecs.

The propagation of charged cosmic rays along such intricate magnetic fields results in complex
trajectories that must be studied numerically. In this review we shall focus on some basic physical
mechanisms underlying the complex motion of charged particles in astrophysical environments in
order to contribute to the understanding of the most recent results presented in other chapters of
this book.

2. Acceleration in gravitational and electric fields

• Gravitational acceleration. The velocity acquired by a cosmic ray falling from infinity onto
a stellar object of mass M and radius R is:

v =

√
2GM

R
. (2.1)

Thus, the compactness M/R of the stellar object determines the maximum velocity to which the
particle may be accelerated in the gravitational field. For white dwarf stars (R∼ 104 km, M∼ 1M⊙)
the maximum velocity is vmax ≈ 0.025c corresponding to a Lorentz factor γmax ≈ 1.0003, which is
too small for producing relativistic particles. For neutron stars (R ∼ 10 km, M ∼ 1.5− 2M⊙) we
find vmax ∼ c/2, and γmax ∼ 1.2. This result is more interesting but still far from the large values
required for cosmic rays.
• Electric fields. For some compact objects, the time variation of the magnetic field could lead

to the generation of large electromotive forces. Let us consider the Faraday’s law ε = −dφ/dt,
where ε =

∮
C E · dl is the electromotive force generated by the variation of the magnetic field and

φ =
∫

S B ·dA is the magnetic flux across a surface S inside a closed curve C. Thus:∮
C

E ·dl =− d
dt

∫
S

B ·dA. (2.2)

For the flux variation over a surface closed by a circular region with radius R we obtain φ = BπR2.
After one cycle around such region a particle of charge q gains an energy:

E = qε = qπR2 dB
dt
∼ qπBR2

τ
(2.3)

where τ is some typical timescale for the variation of the magnetic field.
In the case of the Sun, turbulent motions of the electron-proton plasma produce currents that

generate magnetic fields. The eventual further decay of these fields may give rise to electric fields
that are able to accelerate the electrons and the protons. Let us consider a dark magnetized sunspot
on the solar surface with a field B∼ 2000 G, radius R∼ 104 km, and a lifetime of one day. Using
Eq. (2.3) we find that the energy gain is E ≈ 0.7 GeV. Although the details on how this energy
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is transferred to the gas particles are still not fully understood, and other acceleration mechanisms
such as Fermi process or magnetic reconnection may be also occurring on the solar surface, this
simple estimate shows that at least there is sufficient energy in sunspots to accelerate particles to
high energies. Actually, cosmic rays up to 1011 eV have been observed coming from the Sun.

Similar arguments can be applied to the case of pulsars. They are very compact objects (R≈ 10
km) with surface magnetic fields of ∼ 1012− 1014 G, that rotate with periods as fast as 0.03s. A
more careful calculation than the one given above leads to the following result:

E ≈ qBΩ2R3

2
, (2.4)

where Ω is the rotation frequency (more details about this formula can be found in [7, 9, 8]). With
Eq. (2.4) we can show that varying magnetic fields at the magnetosphere of pulsars are able to
accelerate particles to at most 1015 eV, which is not sufficient to produce ultra-high energy cosmic
rays (which have energies > 1018 eV). However, the possibility of accelerating these ultra-high
energy cosmic rays in pulsars still deserves more study. For example, some neutron stars called
magnetars are believed to have fields of 1015 G although unfortunately they have long rotation
periods (some seconds). But, very young neutron stars are expected to have at the same time a
large field and a short rotation period (near milliseconds) and thus we can obtain E ≈ 4× 1019

eV for protons, and E ≈ 1021 eV for iron nuclei. Thus, it seems that neutron stars are viable
accelerators for high energy cosmic rays but theoretical models should be worked in detail.

3. Motion of charged particles in uniform magnetic fields

In this section we shall show that to lowest order, charged particles perform a helical motion
along the magnetic field lines. This is true within both a non-relativistic and a relativistic treatment.
We also show that the kinetic energy of charged cosmic rays is conserved as they propagate trough
’non-moving’ magnetic fields. Finally, we show some estimates about the trajectories of energetic
charged particles in the galactic magnetic field.

3.1 Non-relativistic case.

The simplest case is B = constant and E = 0. For this case the equation of motion is:

m
dv
dt

= qv×B (3.1)

Taking B = Bẑ we have:

m
dvx

dt
= qvyB, (3.2)

m
dvy

dt
= −qvxB, (3.3)

m
dvz

dt
= 0. (3.4)

The first two equations can be written as
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Figure 1: Helical motion of a charged particle in a uniform magnetic field. The motion is a combination of
a uniform displacement along a magnetic field line and a circular motion around a field line (in a circle of
radius rL).

m
d2vx

dt2 = −
(

qB
m

)2

vx, (3.5)

m
d2vy

dt2 = −
(

qB
m

)2

vy, (3.6)

which describe a simple harmonic oscillator at the cyclotron frequency ωc ≡ qB/m. Thus, the
solution of the equations of motion can be written as:

dx
dt
≡ vx = v⊥ sin(ωct +δ ) (3.7)

dy
dt
≡ vy = v⊥ cos(ωct +δ ) (3.8)

dz
dt
≡ vz = v‖ (3.9)

where δ is an arbitrary phase, v⊥ is a positive constant denoting the speed in the plane perpendicular
to B, and v‖ is the constant speed in the direction parallel to B. Integrating the equations above we
have:

x− x0 = −rL cos(ωct +δ ) (3.10)

y− y0 = rL sin(ωct +δ ), (3.11)

z− z0 = v‖t (3.12)

where we have defined the Larmor radius (also known as gyration or cyclotron radius) as rL =

v⊥/|ωc|, and x0,y0,y0 are constants. In the xy-plane we have a circular orbit around a guiding center
(x0,y0) with a radius rL while in the z direction we have a uniform motion. Thus, the equations
describe a helical motion of the charged particle along the z direction. For positive particles we
have a left-handed motion and for negative particles a right-handed motion.
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3.2 Relativistic case.

The equation of motion is now

d
dt
(mγ v) = qv×B. (3.13)

where γ is the Lorentz factor defined as γ = (1− v2)−1/2, with v in units of the speed of light c. If
we dot both sides of the equation with v we have:

v · d
dt
(mγ v) = qv · (v×B). (3.14)

The right hand side of the equation is zero because v⊥(v×B). The left hand side can be written
as follows:

v · d
dt
(mγv) = mγ v · dv

dt
+mv2 dγ

dt
= (3.15)

=
1
2

mγ
d(v2)

dt
+mv2 dγ

d(v2)

d(v2)

dt
(3.16)

= m
(

1
2

γ +v2 dγ

d(v2)

)
d(v2)

dt
= 0. (3.17)

Since the first factor of Eq. (3.17) is non-zero, we have d(v2)/dt = 0 and, therefore, v2 = constant
and γ = constant. Thus, the kinetic energy of the charged particle is not changed by the magnetic
field:

E = mγc2 = constant. (3.18)

Notice that this is true in a general non-uniform magnetic field, provided that the electric field is
zero.

The solution of the equation of motion is straightforward. Since γ = constant, Eq. (3.13) reads
mγdv/dt = qv×B and therefore the particle’s trajectory is described by Eqs. (3.10,3.11,3.12) but
with a relativistic gyro-frequency and gyro-radius given by

ωc ≡
qB
γ m

, (3.19)

rL ≡
v⊥
ωc

=
γ mv⊥
|q|B

=
γmv⊥

qB
=

p⊥
qB

=
psinθ

qB
(3.20)

where, p is the moment of the particle and the angle θ between p and the magnetic field is called
pitch angle. Notice that the gyro-frequency is independent of energy in the non-relativistic case,
but it is inversely proportional to the energy for relativistic particles.

Interesting conclusions can be obtained by comparing the radius of the galaxy, rG ≈ 10 kpc
with the Larmor radius of a cosmic ray of energy E and charge Ze. Very high energy cosmic
rays are almost undeflected as they move trough the galaxy; try for instance Z = 1, E = 1019

eV and B = 2µG. Indeed, for E/Z > 1018 eV, the trajectories of cosmic rays are not confined
within the Galaxy, but for lower E/Z they remain trapped in the Milky Way for a long time. For
E/Z < 1017 eV they scatter off the turbulent magnetic field irregularities making a random walk.
For E/Z < 1014 eV the cosmic ray sky becomes completely isotropic due to this scattering.
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Figure 2: Motion of a charged particle in a constant electric and magnetic field. On the left it is shown the
motion of a positively charged particle (e.g. an ion). On the upper half cycle of the orbit the particle gains
energy due to the x component of the electric field; thus, v⊥ and rL increase. In the lower half cycle of the
orbit the particle losses energy because it moves against Ex; thus, rL decreases. The difference in rL on the
left and right hand sides of the orbit causes the drift vE in the −y direction. On the right of the figure it is
shown the motion of a negatively charged particle (e.g. an electron). Now the particle gyrates in the opposite
direction but also gains energy in the opposite direction. As a consequence a negative particle drifts in the
same direction as a positive one. Notice that for simplicity we have not included in the plot the accelerated
motion along the z direction.

4. Motion in non-uniform electromagnetic fields

For arbitrary non-uniform electromagnetic fields the problem becomes too complicated to be
solved exactly. In general it is necessary to solve numerically the equation of motion

m
d2r
dt2 = q(E+v×B), (4.1)

for a charged particle in an arbitrary field configuration. Since this kind of analysis is out of the
scope of the present review, we shall obtain some general conclusions about the effect of electric
fields and then we shall focus on curvature and gradients of the magnetic field. Then, we discuss
the magnetic mirror effect and finally we show some results of numerical simulations of charged
particle propagation in the turbulent magnetic field around a shock front.
• Drift motions. Let us consider B = constant along the z direction and E = constant. Notice

that we may choose E to be in the xz-plane by rotating the reference frame appropriately. Thus, the
equation of motion m dv

dt = q(E+v×B) reads:

dvx

dt
=

q
m

Ex +ωcvy, (4.2)

dvy

dt
= −ωcvx, (4.3)

dvz

dt
=

q
m

Ez. (4.4)
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Eq. (4.4) describes an acceleration of the particle along the direction of B. The solution of the
transverse motion is:

dx
dt
≡ vx = v⊥ sin(ωct +δ ), (4.5)

dy
dt
≡ vy = v⊥ cos(ωct +δ )− Ex

B
. (4.6)

Therefore, the motion has the following properties: (a) there is an acceleration along B due to
the z component of the electric field, (b) we have a circular Larmor gyration in the xy plane, (c)
superimposed to the Larmor motion there is a drift of the guiding center in the y direction with a
velocity vE =−Ex/B. The resulting motion and a qualitative explanation of it are given in Fig. 2.

In general, it is easy to show that the drift velocity due to an electric field is:

vE =
E×B

B2 . (4.7)

Notice that vE is independent of the mass and the electric charge of the particle.
• Curvature of field lines. The expression for the drift velocity given above can be generalized

to other forces by replacing E with F/q, where F is a general force. The resulting drift of the
guiding center is then,

vF =
F×B
qB2 . (4.8)

Let us consider a magnetic field of constant strength (|B| = constant) but curved with a constant
curvature radius rC. The centrifugal force felt by the particle as it moves along the magnetic field
lines originates a drift of the guiding center. The centrifugal force can be written as:

FC =
mv2
‖rC

r2
C

(4.9)

where v‖ denotes the velocity along the direction of B. Thus, the curvature drift is given by

vC =
FC×B

qB2 =
mv2
‖

qB2
rC×B

r2
C

, (4.10)

resulting a motion that is perpendicular to both the curvature radius and the magnetic field.
• Gradient of B. Now we analyse a magnetic field that has a gradient along a direction that is

perpendicular to the magnetic field lines (∇|B|⊥B). For simplicity we consider straight magnetic
field lines in the z direction, as shown in Fig 3. Because of the gradient in |B| the Larmor radius
is smaller at the top of the orbit than at the bottom of it. This causes a drift which has opposite
directions for negatively and positively charged particles. An elementary calculation that is left to
the reader shows that the drift velocity is given by:

v∇B =
rLv2
‖

2
B×∇|B|

B2 , (4.11)

i.e., charged particles drift along the x direction as shown in Fig. 3.
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Figure 3: Drift motion due to a gradient of the magnetic field.

• Magnetic mirror. An effect that is of outstanding relevance for the understanding of cosmic
ray acceleration is magnetic mirroring. Let us consider an axisymmetric magnetic field pointed
primarily in the z direction and whose magnitude varies in the z direction. Since the magnetic field
is divergence free, it will have x and y components as the lines approximate each other, and the
field lines will look as shown in Figure 4.

Let us now consider a charged particle spiraling along the z direction (coming from the left of
the plot). It is possible to show that for most spatially and temporally varying magnetic fields the
magnetic moment of the particle

µ ≡
1
2 mv2

⊥
B

, (4.12)

remains invariant as the particle moves (it is an adiabatic invariant). When the particle moves
into the region with larger B, the velocity v⊥ must increase in order to keep µ = constant. But the
kinetic energy E = 1

2 mv2
‖+

1
2 mv2

⊥ is also a constant. Thus, when v⊥ increases, v‖ must decrease.
If B grows enough, v‖ goes to zero as the particle moves and the particle is reflected back to the

Figure 4: Magnetic mirroring.
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z

x

z

(c)

Shock Shock (b)(a)

x

z

Figure 5: A portion of the trajectories of three charged particles that are accelerated from low to high
energies due to magnetic inhomogeneities around three different shock discontinuities. Panels (a) and (b)
were adapted from Ref. [10] and panel (c) from Ref. [11]. The results were obtained through Monte Carlo
simulation of test-particles in relativistic magnetohydrodynamic shock waves.

region of smaller B.

• Motion in complex magnetic fields. As an example of the motion of charged particles in
complex magnetic field configurations we shall briefly address particle acceleration at astrophysi-
cal shock waves. When encountering a collisionless shock, charged particles may be accelerated by
means of two basic mechanisms. In the first-order Fermi acceleration mechanism (to be discussed
below), particles stochastically diffuse back and forth across the shock front and gain energy by
scattering from magnetic turbulence embedded in the converging flows. Alternatively, in magne-
tized flows, particles may also gain energy directly from the background motional electric field
E = u×B while they gyrate around the shock (here u is the velocity of the plasma). The latter
process is given different names (e.g. Shock Drift Acceleration and Shock Surf Acceleration) de-
pending on the barrier that reflects the particles back and forth. In Fig. 5 we show results obtained
by the numerical integration of the particle equations of motion in the turbulent magnetic field near
relativistic magnetohydrodynamic shock fronts [10, 11]. Typical drift motions described before
can be identified in several directions.

10
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Figure 6: Collision of a charged particle with a magnetic mirror.

5. Collision of a cosmic ray with a magnetic mirror

In a previous section we showed that a static magnetic field cannot accelerate charged par-
ticles. However, the situation may be different for non-static magnetic fields. For simplicity, let
us consider the one-dimensional collision of a cosmic ray of rest mass m with a moving magnetic
mirror of mass M. In the observer’s frame the velocities of the cosmic ray and the mirror are v and
V respectively.

Thus, the initial four-momentum of the cosmic ray in the observer’s frame is:

pµ

i =

(
E/c

p

)
= γ(v)m

(
c
v

)
. (5.1)

In a reference frame fixed to the magnetic mirror we have p
′µ
i = Λ(V )pµ

i where Λ(V ) is a boost
with velocity V . Thus,

p
′µ
i = Λ(V )pµ

i = γ(V )

(
1 V/c

V/c 1

)
× γ(v)m

(
c
v

)
= γ(V )γ(v)m

(
c+ vV

c
V + v

)
(5.2)

being γ(v) = [1− v2/c2]−1/2 the Lorentz factor.
Now, we shall consider elastic collisions in the mirror’s frame. In this case the particle’s energy

after the collision is the same as before the collision and the momentum is inverted. Therefore, the
final momentum of the cosmic ray is:

p
′µ
f = γ(V )γ(v)m

(
c+ vV

c
−V − v

)
. (5.3)

Finally, we turn back to the observer’s frame:

pµ

f = Λ(−V )p
′µ
f = γ(V )2

γ(v)m

(
c+ 2vV

c + V 2

c

−v−2V − V 2v
c

)
. (5.4)
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Figure 7: In the second order mechanism proposed by Fermi, cosmic rays collide stochastically with the
magnetic field embedded in randomly moving interstellar clouds. Since head-on collisions are more probable
than tail collisions, a cosmic ray gains kinetic energy after several reflections.

In the observer’s frame, the ratio between the particle’s energy after and before reflection is:

E f

Ei
=

γ(V )2γ(v)m
(

c+ 2vV
c + V 2

c

)
γ(v)mc

=

(
1+ 2vV

c2 + V 2

c2

)
1− V 2

c2

. (5.5)

For V � c we have
E f

Ei
= 1+

2vV
c2 +

2V 2

c2 +O

(
V 3

c3

)
, (5.6)

and then, the relative energy change is

∆E
E
≡

E f −Ei

Ei
=

2vV
c2 +

V 2

c2 ≈ 2
V
c
+2

V 2

c2 . (5.7)

Since the first order term can be positive or negative we have:

for head-on collisions: ∆E
E > 0 → energy gain,

for back collisions: ∆E
E < 0 → energy loss.

(5.8)

6. Second order Fermi mechanism

One of the earliest theories on the acceleration of cosmic rays was proposed by Enrico Fermi
[5] and became known as the second order Fermi mechanism. Although it is now clear that such a
mechanism is too slow to obtain high particle energies in the known lifetime of cosmic rays in the
galaxy, it is still the basis of much of the work on acceleration theory.

In this model, particles collide stochastically with many magnetic clouds in the interstellar
medium. In a collision with a receding cloud the cosmic ray loses energy (the cloud velocity is
−V ). In a collision with an approaching cloud the CR gains energy (the cloud velocity is +V )

12
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Figure 8: Sketch of a shock wave discontinuity showing the upstream and downstream flows.

Since clouds velocities are distributed randomly, we expect that if we calculate the average
energy gain after several collisions, the first order term will vanish, leaving only second-order
terms ∝ V 2/c2:

∆E
E

∝
V 2

c2 . (6.1)

That is, on average there is an energy gain. This occurs even in a completely random medium
because head-on collisions are more probable than back collisions (when you drive a car in the
rain, the amount of water hitting the front windshield is larger than the amount hitting the rear
windshield). Unfortunately, the energy gain is only second order, which is not as efficient as the
first order one. In the case of collisions with interstellar clouds it is now clear that such a mechanism
is too slow to obtain high energy particles in the few million years that a cosmic ray stays in the
galaxy. However, the main idea of the mechanism has a wide applicability, e.g. cosmic rays
can collide with magnetic inhomogeneities on both sides of a shock front, or with small moving
inhomogeneities in turbulent plasmas. In the next sections we shall concentrate on the interaction
with shock fronts and we shall show that it leads to a much more efficient first order mechanism.

7. Shock waves

Shock phenomena are very frequent in astrophysical fluids. They span a large range of scales,
including the bow shock caused by the Earth’s magnetic field colliding with the solar wind, inter-
planetary shock waves when the solar wind collides with planetary magnetospheres, the termination
shock in the ultra-relativistic wind from young pulsars, shocks surrounding supernova remnants due
to the interaction of the expanding ejecta with the interstellar medium, shock waves in the jets of
protostellar objects, microquasars, gamma ray bursts (GRBs) and active galactic nuclei (AGNs),
and shock waves caused by galaxies colliding with each other.
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From a hydrodynamic point of view, shock waves are surface discontinuities in the physical
variables of a flow involving a flux of mass, momentum and energy through the surface, which
are caused when a fluid moves supersonically into another one. In reality, the discontinuity is not
infinitely steep but it has a finite thickness. However, we will not examine the complex physi-
cal phenomena that may occur inside the front. Instead, our scope is to solve the conservation
laws across the shock front in order to derive a simple relationship between the velocities of the
fluid on both sides of the discontinuity that will be useful for understanding the first order Fermi
acceleration mechanism.

For simplicity we shall assume a steady flow perpendicular to the shock front and use a coor-
dinate system fixed to the discontinuity. Denoting the preshocked or upstream gas as “u” and the
postshocked or downstream gas as “d”, we can write the mass, momentum and energy conservation
laws as follows:

ρuvu = ρdvd , (7.1)
1
2

v2
u +wu =

1
2

v2
d +wd , (7.2)

pu +ρuv2
u = pd +ρdv2

d . (7.3)

where v is the velocity of the fluid, p the pressure, ρ the density, w≡ ε + p/ρ the specific enthalpy
(i.e. per unit mass), and ε the specific internal energy. The above equations are the well known
Rankine-Hugoniot conditions for a stationary one-dimensional adiabatic flow. For more details on
these equations the reader is referred to Ref.[4].

Notice that the Rankine-Hugoniot conditions involve three thermodynamic variables, i.e. ρ , p
and w. Thus, we need to know the equation of state of the fluid in order to know the velocity and
the thermodynamic state of the fluid on one side of the shock in terms of the variables on the other
side. For simplicity we shall consider an ideal gas with polytropic index γ , for which we have

w =
γ p

(γ−1)ρ
=

c2
s

(γ−1)
, (7.4)

being cs the velocity of sound. Defining the Mach number as M ≡ v/cs we easily obtain from Eqs.
(7.1,7.2,7.3):

ρd

ρu
=

vu

vd
=

(γ +1)M2
1

(γ−1)M2
1 +2

. (7.5)

In the limit of a strong adiabatic shock (M1→ ∞) we find an upper limit for the compression and
the velocity ratio:

ρd

ρu
=

vu

vd
=

(γ +1)
(γ−1)

, (7.6)

which for γ = 5/3 reads:
ρd

ρu
=

vu

vd
= 4. (7.7)

8. First order Fermi mechanism

In 1978, Bell [12] and Blandford & Ostriker [13] proposed a first order acceleration mech-
anism occurring around shock waves. As mentioned before, numerical simulations show how
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charged particles perform a random walk motion around a shock discontinuity due to scatter-
ing with magnetic inhomogeneities in the turbulent plasma (see Fig. 5). In a simplified one-
dimensional picture we may consider that a relativistic particle traverses a shock front and is back-
scattered many times on both sides of the shock (magnetic mirror effect). If we assume that the
inhomogeneities are ’frozen’ in the fluid, we can straightforwardly apply the expression obtained at
the end of Section 6. When the cosmic ray is reflected in the upstream flow there is an energy gain
2vu/c. When it is reflected in the downstream flow there is an energy loss 2vd/c. But vu > vd , thus,
in one “back and forth” cycle there is a net energy gain ∆E/E ∝ 2(vu− vd)/c. A more complete
treatment, including variable scattering angles, leads to an energy gain per cycle given by:

∆E
E

=
4
3
(vu− vd)

c
. (8.1)

In order to calculate the spectrum of the particles we can use the Fokker-Plank equation to describe
the energization. Since this topic will be addressed in detail by P. Blasi in this Proceedings, we
shall only present a simple argument showing that a power law spectrum is obtained [14]. Let us
write the energy gain per cycle of a cosmic ray as a fraction of its energy, ∆E = ηE. After n cycles
its energy will be E = E0(1+η)n, being E0 the initial energy. Now, we can put the number of
acceleration cycles as a function of the energy:

n =
ln(E/E0)

ln(1+η)
. (8.2)

Since the cosmic ray can escape from the shock region at any time, we shall define the probability
P that the particle stays in the system for one more cycle. Thus, after n cycles the number of
remaining cosmic rays is N = N0Pn, where N0 is the initial number of particles. Substituting the
expression for n obtained above we have:

N = N0P
ln(E/E0)
ln(1+η) . (8.3)

From the latter expression we obtain

N
N0

=

(
E
E0

) lnP
ln(1+η)

, (8.4)

which is the number of cosmic rays with energy larger than E (i.e. with more that n cycles). Thus,
the differential energy spectrum dN/dE follows a power law

dN
dE

∝ E
lnP

ln(1+η)−1
. (8.5)

A more rigorous calculation (see e.g. P. Blasi in this Proceedings) allows to show that the exponent
is ∼ 2−3, i.e. in agreement with the observed values.

To finish, we emphasize that although the first order Fermi process is now recognized as the
most important acceleration mechanism in astrophysical plasmas, various other mechanisms are
relevant in specific applications. For a recent review the reader is referred to [15].
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