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Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynam-

ics (QCD), offer promise for predicting phenomena on all scales from the microscopic to cosmic

scales. New tools that go beyond perturbation theory are required to build bridges from one scale

to the next. Recent theoretical and computational progressin quantum many-body theory show

how to build such bridges and those developments are applicable to light-front field theory. In

particular, by choosing light-front gauge and adopting a basis function representation, one ob-

tains a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories that is solvable

by adapting theab initio no-core methods of nuclear many-body theory. In this way, one obtains

the invariant masses and correlated parton amplitudes suitable for accessing all experimental ob-

servables. Full covariance is recovered in the continuum limit, the infinite matrix limit. I outline

the approach and discuss the computational challenges.
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1. Introduction

Non-perturbative solutions of quantum field theory represent opportunities and challenges that
span particle physics and nuclear physics. Fundamental understanding of, among others, the spin
structure of the proton, the neutron electromagnetic form factor, and the generalized parton dis-
tributions of the baryons should emerge from results derived from a non-perturbative light-front
Hamiltonian approach. The light-front Hamiltonian quantized within in a basis function approach
offers a promising avenue that capitalizes on theoretical and computational achievements in quan-
tum many-body theory over the past decade.

By way of background, one notes that Hamiltonian light-front field theory in a discretized
momentum basis [1] and in transverse lattice approaches [2,3] have shown significant promise. I
outline here a Hamiltonian basis function approach following Ref. [4] that exploits recent advances
in solving the non-relativistic strongly interacting nuclear many-body problem [5, 6]. There are
many issues faced in common - i.e. how to (1) define the Hamiltonian; (2) renormalize for the
available finite spaces while preserving all symmetries; (3) solve for eigenvalues and eigenvectors;
(4) evaluate experimental observables; and, (5) take the continuum limit.

I begin with a brief overview of recent advances in solving light nuclei with realistic nucleon-
nucleon (NN) and three-nucleon (NNN) interactions usingab initio no-core methods. After re-
viewing some advances with two-dimensional theories, I outline a basis function approach suitable
for light front gauge theories including the issues of renormalization/regularization. I present an
outline of the approach to cavity-mode QED and sketch its extension to QCD.

2. No Core Shell Model (NCSM) and No Core Full Configuration (NCFC) methods

To solve for the properties of nuclei, self-bound strongly interacting systems, with realistic
Hamiltonians, one faces immense theoretical and computational challenges. Recently,ab initio
approaches have been developed that preserve all the underlying symmetries and they converge
to the exact result. The basis function approach [5, 6] is oneof several methods shown to be
successful. The primary advantages are its flexibility for choosing the Hamiltonian, the method of
renormalization/regularization and the basis space. These advantages support the adoption of the
basis function approach in light-front quantum field theory.

Refs. [5, 7, 8, 9] and [6, 10, 11] provide examples of the recent advances in theab initio NCSM
and NCFC, respectively. The NCSM adopts a renormalization method that provides an effective
interaction dependent on the chosen many-body basis space cutoff (Nmaxbelow). The NCFC either
retains the un-renormalized interaction or adopts a basis-space independent renormalization so that
the exact results are obtained either by using a sufficientlylarge basis space or by extrapolation
to the infinite matrix limit. Recent results for the NCSM employ realistic nucleon-nucleon (NN)
and three-nucleon (NNN) interactions derived from chiral effective field theory to solve nuclei with
Atomic Numbers 10-13 [7]. Recent results for the NCFC feature a realistic NN interaction that is
sufficiently soft that binding energies and spectra from a sequence of finite matrix solutions may
be extrapolated to the infinite matrix limit [11]. Experimental binding energies, spectra, magnetic
moments and Gamow-Teller transition rates are well-reproduced in both the NCSM and NCFC
approaches. Convergence of long range operators such as electric quadrupole are more challenging.
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It is important to note two recent analytical and technical advances. First, non-perturbative
renormalization has been developed to accompany these basis-space methods and their success is
impressive. Several schemes have emerged and current research focuses on understanding of the
scheme-dependence of convergence rates (different observables converge at different rates) [10].
Second, large scale calculations are performed on leadership-class parallel computers to solve for
the low-lying eigenstates and eigenvectors and to evaluatea suite of experimental observables.
Low-lying solutions for matrices of basis-space dimension10-billion on 200,000 cores with a
5-hour run is the current record. However, one expects theselimits to continue growing as the
techniques are evolving rapidly [9] and the computers are growing dramatically. Matrices with di-
mensions in the several tens of billions will soon be solvable with strong interaction Hamiltonians.

In a NCSM or NCFC application, one adopts a 3-D harmonic oscillator for all the particles in
the nucleus (with harmonic oscillator energyh̄Ω), treats the neutrons and protons independently,
and generates a many-fermion basis space that includes the lowest oscillator configurations as well
as all those generated by allowing up toNmax oscillator quanta of excitations. The single-particle
states specify the orbital angular momentum projection andthe basis is referred to as them-scheme
basis. For the NCSM one also selects a renormalization scheme linked to the basis truncation
while in the NCFC the renormalization is either absent or of atype that retains the infinite matrix
problem. In the NCFC case [6], one extrapolates to the continuum limit as I now illustrate.
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Figure 1: Calculated ground state (gs) energy of12C for Nmax= 2−10 (symbols) at selected values ofh̄Ω.
For each̄hΩ, the results are fit to an exponential plus a constant, the asymptote, constrained to be the same
for all h̄Ω[6]. Horizontal lines indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).
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I show in Fig. 1 results for the ground state (gs) of12C as a function ofNmax obtained with
a realistic NN interaction, JISP16 [8]. The smooth curves portray fits that achieve asymptotic
independence ofNmax and h̄Ω. The NCFC gs energy (the common asymptote) of−94.5 MeV
indicates∼ 3% overbinding. The assessed uncertainty in the NCFC resultis 0.5 MeV indicated in
parenthesis in the figure. The largest calculations correspond toNmax= 10, with a matrix dimension
near 8 billion.Nmax= 12 produces a matrix dimension near 81 billion which we hope to solve in
the future.

3. Light-front Hamiltonian field theory

It has long been known that light-front Hamiltonian quantumfield theory has similarities with
non-relativistic quantum many-body theory and this has prompted applications with established
non-relativistic many-body methods (see Ref. [1] for a review). These applications include theo-
ries in 1+1, 2+1 and 3+1 dimensions. Several of my efforts in 1+1 dimensions, in collaboration
with others, have focused on developing an understanding ofhow one detects and characterizes
transitional phenomena in the Hamiltonian approach. To this end, I list the following develop-
ments:

1. identification and characterization of the quantum kink solutions in the broken symmetry
phase of two dimensionalφ4 including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical results [12];

2. detailed investigation of the strong coupling region of the topological sector of the two-
dimensionalφ4 theory demonstrating that low-lying states with periodic boundary conditions
above the transition coupling are dominantly kink-antikink coherent states [13];

3. switching to anti-periodic boundary conditions in the strong coupling region of the topolog-
ical sector of the two-dimensionalφ4 theory and demonstrating that low-lying states above
the critical coupling are dominantly kink-antikink-kink states as well as presenting evidence
for the onset of kink condensation[14]. Fig. 2 presents the detailed transition of the lowest 5
mass eigenstates in the broken phase from kink to kink-antikink-kink structure over a narrow
range in the coupling. Increasing the resolutionK shrinks the range in coupling over which
the transitions occur.

More recently, full-fledged applications to gauge theoriesin 3+1 dimensions have appeared
and there are several talks at this conference showing initial results for QED (e.g. talks by Honka-
nen, by Hiller and by Chabysheva) plus roadmaps for addressing QCD. A brief summary of some
of the major developments in 3+1 dimensional Hamiltonian light front field theory includes the
solutions of

1. light-front QED wave equations for the electron plus electron-photon system [15]

2. simplified gauge theories with a transverse lattice [2, 3,16]

3. Hamiltonian QED for the electron plus electron-photon system in a trap with a basis function
approach [4, 20] that I discuss in the next section.
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Figure 2: Expectation value of the square of the scalar field as a function of the coupling constantλ at light-
front harmonic resolutionK=55 for the lowest five excitations of two dimensionalφ4 in the broken phase
[14]. The pattern of transitions correspond to 5 states falling with increasingλ and crossing the 5 lowest
states, thus replacing them and becoming the new 5 lowest states. At selected values ofλ , the character
of the lowest states is indicated on the figure with the top level of each column signifying the nature of the
lowest state. Successive excited states are signified by thelabels proceeding down the column. The letter
“K” represents “kink” while “KK̄K” represents “kink-antikink-kink”.

These successes open pathways for ambitious research programs to evaluate non-perturbative
amplitudes and to address the multitude of experimental phenomena that are conveniently evalu-
ated in a light-front quantized approach. As one important example, consider the deeply virtual
Compton scattering (DVCS) process which provides the opportunity to study the 3-dimensional
coordinate space structure of the hadrons. Recent efforts with model 3+1 dimensional light-front
amplitudes [18] have shown that the Fourier spectra of DVCS should reveal telltale diffractive
patterns indicating detailed properties of the coordinatespace structure.

4. Cavity mode light-front QED and QCD

Together with co-authors, I have introduced the "Basis Light Front Quantized (BLFQ)" ap-
proach [4] which adopts a light-front basis space consisting of the 2-D harmonic oscillator for the
transverse modes (radial coordinateρ and polar angleφ ) and a discretized momentum space basis
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for the longitudinal modes with either periodic or anti-periodic boundary conditions. The 2-D os-
cillator states are chosen to retain rotational symmetry aboutx− direction and they are characterized
by their principal quantum numbern and orbital quantum numberm. Adoption of this basis is also
consistent with recent developments in AdS/CFT correspondence with QCD [19]. Note, however,
that the choice of basis functions is arbitrary except for the standard conditions of orthonormality
and completeness.

In our initial applications, we focus on QED and consider systems in a transverse scalar har-
monic trap [20]. This setup will be useful for addressing a range of strong field QED problems
such as electron-positron pair production in relativisticheavy-ion collisions and with ultra-strong
pulsed lasers planned for the future. We adopt the sector dependent non-perturbative renormaliza-
tion scheme [21].

The chosen basis allows the imposition of symmetry constraints that reduce the Hamiltonian
matrix dimension considerably. For example, we impose the constraint of a fixed total magnetic
projection (Jz) and fixed total longitudinal momentum in dimensionless units (K) consistent with
longitudinal boost invariance. We also impose a cutoff in the Fock space basis controlling the
number of fermion and boson degrees of freedom and we impose alimit on the maximum total 2-D
oscillator quanta (Nmax) in the basis. We then investigate how the non-perturbativeresults depend
on the cutoffs and seek to obtain results in the continuum limit where the cutoffs are removed.

The total light-front Hamiltonian isH = H0+V (KH gives the invariant mass-squared) where
the unperturbed HamiltonianH0 for this system is defined by the sum of the occupied modes with
the scale set by the combined constantΛ2

= 2M0Ω with Ω representing the harmonic oscillator
frequency:

H0 = 2M0P−
c =

Λ2

K ∑
i

2ni + |mi|+1+ m̄2
i /Λ2

xi
, (4.1)

wherem̄i is the mass of the partoni and xi is its light-front momentum fraction. We keep the
photon mass set to zero and the electron mass ¯me is set at the physical mass 0.511 MeV in our
non-renormalized calculations. We also setM0 = m̄e. The interaction vertices are taken directly
from light-front quantized QED in the light-front gauge andare used to generate the interaction
matrix elements in the basis. Considerable analytical and numerical efforts are required to achieve
an efficient evaluation scheme for these matrix elements.

We can extend this approach to QCD by implementing the SU(3) color degree of freedom for
each parton - 3 colors for each fermion and 8 for each boson. Wehave investigated two methods
for implementing the global color singlet constraint. In the first case, we follow Ref. [22] by
constraining all color components to have zero color projection and adding a Lagrange multiplier
term to the Hamiltonian to select global color singlet eigenstates. In the second case, we restrict the
basis space to global color singlets [4, 23]. The second method produces a factor of 30-40 lower
many-parton basis space dimension at the cost of increased computation time for matrix elements.
Either implementation provides an exact treatment of the global color symmetry constraint but the
use of the second method provides overall more efficient use of computational resources.
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5. Conclusion

The short history of light-front Hamiltonian field theory features many advances that pave
the way for non-perturbative solutions of gauge theories. The goal is to evaluate the light-front
amplitudes for strongly interacting composite systems andpredict experimental observables. High
precision tests of the Standard Model may be envisioned as well as applications to theories beyond
the Standard Model.

Following successful methods ofab initio nuclear many-body theory, we have introduced a
basis light-front quantization (BLFQ) approach to Hamiltonian quantum field theory and illus-
trated some of its key features with a cavity mode treatment of QED. We have developed methods
for treating color in order to extend the light-front BLFQ appraoch to QCD. The computational
requirements of this approach are substantial, and we foresee extensive use of leadership-class
computers to obtain practical results.
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