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1. Introduction

Non-perturbative solutions of quantum field theory repnesgportunities and challenges that
span particle physics and nuclear physics. Fundamentarstachding of, among others, the spin
structure of the proton, the neutron electromagnetic faaoidr, and the generalized parton dis-
tributions of the baryons should emerge from results ddrivem a non-perturbative light-front
Hamiltonian approach. The light-front Hamiltonian quaatl within in a basis function approach
offers a promising avenue that capitalizes on theoreticdl@mputational achievements in quan-
tum many-body theory over the past decade.

By way of background, one notes that Hamiltonian light-fréinld theory in a discretized
momentum basis [1] and in transverse lattice approached] fave shown significant promise. |
outline here a Hamiltonian basis function approach follmMRef. [4] that exploits recent advances
in solving the non-relativistic strongly interacting neat many-body problem [5, 6]. There are
many issues faced in common - i.e. how to (1) define the Hanidlig (2) renormalize for the
available finite spaces while preserving all symmetriess@@ve for eigenvalues and eigenvectors;
(4) evaluate experimental observables; and, (5) take thencam limit.

| begin with a brief overview of recent advances in solvirghtinuclei with realistic nucleon-
nucleon (NN) and three-nucleon (NNN) interactions usafiginitio no-core methods. After re-
viewing some advances with two-dimensional theories, lireeia basis function approach suitable
for light front gauge theories including the issues of remalization/regularization. | present an
outline of the approach to cavity-mode QED and sketch itsresibn to QCD.

2. No Core Shell Model (NCSM) and No Core Full Configuration (NCFC) methods

To solve for the properties of nuclei, self-bound strongfiteracting systems, with realistic
Hamiltonians, one faces immense theoretical and compugdtichallenges. Recentlgp initio
approaches have been developed that preserve all the yindesiymmetries and they converge
to the exact result. The basis function approach [5, 6] is @nseveral methods shown to be
successful. The primary advantages are its flexibility fovasing the Hamiltonian, the method of
renormalization/regularization and the basis space. &hdsantages support the adoption of the
basis function approach in light-front quantum field theory

Refs. [5,7,8,9]and [6, 10, 11] provide examples of the readaances in thab initio NCSM
and NCFC, respectively. The NCSM adopts a renormalizatiethod that provides an effective
interaction dependent on the chosen many-body basis sptafé(&max below). The NCFC either
retains the un-renormalized interaction or adopts a lssse independent renormalization so that
the exact results are obtained either by using a sufficidattye basis space or by extrapolation
to the infinite matrix limit. Recent results for the NCSM emyplrealistic nucleon-nucleon (NN)
and three-nucleon (NNN) interactions derived from chifedctive field theory to solve nuclei with
Atomic Numbers 10-13 [7]. Recent results for the NCFC featurealistic NN interaction that is
sufficiently soft that binding energies and spectra fromgusace of finite matrix solutions may
be extrapolated to the infinite matrix limit [11]. Experintahbinding energies, spectra, magnetic
moments and Gamow-Teller transition rates are well-regzed in both the NCSM and NCFC
approaches. Convergence of long range operators suclcagai@adrupole are more challenging.
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It is important to note two recent analytical and technighlamces. First, non-perturbative
renormalization has been developed to accompany thesed@ie methods and their success is
impressive. Several schemes have emerged and currentcte$eeuses on understanding of the
scheme-dependence of convergence rates (different aliesvconverge at different rates) [10].
Second, large scale calculations are performed on leddeststss parallel computers to solve for
the low-lying eigenstates and eigenvectors and to evalaaeite of experimental observables.
Low-lying solutions for matrices of basis-space dimensl@nhbillion on 200,000 cores with a
5-hour run is the current record. However, one expects tlieses to continue growing as the
techniques are evolving rapidly [9] and the computers apeviig dramatically. Matrices with di-
mensions in the several tens of billions will soon be soleatith strong interaction Hamiltonians.

In a NCSM or NCFC application, one adopts a 3-D harmonic lagoil for all the particles in
the nucleus (with harmonic oscillator enei®), treats the neutrons and protons independently,
and generates a many-fermion basis space that includeswbetloscillator configurations as well
as all those generated by allowing upNgax oscillator quanta of excitations. The single-particle
states specify the orbital angular momentum projectionthadbasis is referred to as thescheme
basis. For the NCSM one also selects a renormalization sshieked to the basis truncation
while in the NCFC the renormalization is either absent or tfpe that retains the infinite matrix
problem. In the NCFC case [6], one extrapolates to the coatinlimit as | now illustrate.
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Figure 1: Calculated ground state (gs) energy*&€ for Nmax = 2—10 (symbols) at selected valuesfd.
For eachhQ, the results are fit to an exponential plus a constant, th@pi®te, constrained to be the same
for all hQ[6]. Horizontal lines indicate the experimental gs and tl&HRC result (uncertainty = 0.5 MeV).
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| show in Fig. 1 results for the ground state (gs)'6E as a function 0Ny Obtained with
a realistic NN interaction, JISP16 [8]. The smooth curvedrpy fits that achieve asymptotic
independence dinhax andhQ. The NCFC gs energy (the common asymptote)}-84.5 MeV
indicates~ 3% overbinding. The assessed uncertainty in the NCFC risst5 MeV indicated in
parenthesis in the figure. The largest calculations coorsoNyLax= 10, with a matrix dimension
near 8 billion. Nmax= 12 produces a matrix dimension near 81 billion which we hapsotve in
the future.

3. Light-front Hamiltonian field theory

It has long been known that light-front Hamiltonian quantieid theory has similarities with
non-relativistic quantum many-body theory and this hasmmted applications with established
non-relativistic many-body methods (see Ref. [1] for aeeyi These applications include theo-
ries in 1+1, 2+1 and 3+1 dimensions. Several of my efforts+ifh dimensions, in collaboration
with others, have focused on developing an understandifgpwfone detects and characterizes
transitional phenomena in the Hamiltonian approach. T émid, | list the following develop-
ments:

1. identification and characterization of the quantum kiokusons in the broken symmetry
phase of two dimensiona#* including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical regtR];

2. detailed investigation of the strong coupling region lué topological sector of the two-
dimensionalp® theory demonstrating that low-lying states with periodicibdary conditions
above the transition coupling are dominantly kink-antikaoherent states [13];

3. switching to anti-periodic boundary conditions in thesyg coupling region of the topolog-
ical sector of the two-dimensiongt* theory and demonstrating that low-lying states above
the critical coupling are dominantly kink-antikink-kinkases as well as presenting evidence
for the onset of kink condensation[14]. Fig. 2 presents #taitkd transition of the lowest 5
mass eigenstates in the broken phase from kink to kink{aktikink structure over a narrow
range in the coupling. Increasing the resolutibishrinks the range in coupling over which
the transitions occur.

More recently, full-fledged applications to gauge theome8+1 dimensions have appeared
and there are several talks at this conference showinglingsults for QED (e.g. talks by Honka-
nen, by Hiller and by Chabysheva) plus roadmaps for adarg<$3CD. A brief summary of some
of the major developments in 3+1 dimensional Hamiltonigtlifront field theory includes the
solutions of

1. light-front QED wave equations for the electron plus &taephoton system [15]
2. simplified gauge theories with a transverse lattice [263,

3. Hamiltonian QED for the electron plus electron-photostsgn in a trap with a basis function
approach [4, 20] that | discuss in the next section.



Non-Perturbative Hamiltonian Light-Front Field Theory J. P. Vary

2.3
j Transitions
2.2 KKK
N KKK
K— —
2.1- KKK KKK
A KKK
N KKK
S 2 KKK
v KKK
1.9/ E
1 K
| K
1.8; K —— 3> K_
1 K —— 14> K&K
| K 5 15> KKK
1. L L L B
72.5 255 26 265 27 275 28 28 29 295 3

Figure 2: Expectation value of the square of the scalar field as a fomcti the coupling constant at light-
front harmonic resolutioi=55 for the lowest five excitations of two dimension#lin the broken phase
[14]. The pattern of transitions correspond to 5 statesnfalvith increasingd and crossing the 5 lowest
states, thus replacing them and becoming the new 5 lowdststat selected values df, the character
of the lowest states is indicated on the figure with the toplle¥ each column signifying the nature of the
lowest state. Successive excited states are signified bigltleés proceeding down the column. The letter
“K” represents “kink” while KKK” represents “kink-antikink-kink”.

These successes open pathways for ambitious researclamop evaluate non-perturbative
amplitudes and to address the multitude of experimentahqgahena that are conveniently evalu-
ated in a light-front quantized approach. As one importaain®le, consider the deeply virtual
Compton scattering (DVCS) process which provides the dppity to study the 3-dimensional
coordinate space structure of the hadrons. Recent effattismodel 3+1 dimensional light-front
amplitudes [18] have shown that the Fourier spectra of DVE&ulsl reveal telltale diffractive
patterns indicating detailed properties of the coordiisgi@ce structure.

4. Cavity mode light-front QED and QCD

Together with co-authors, | have introduced the "Basis Ligtont Quantized (BLFQ)" ap-
proach [4] which adopts a light-front basis space congstinthe 2-D harmonic oscillator for the
transverse modes (radial coordingtand polar anglep) and a discretized momentum space basis
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for the longitudinal modes with either periodic or antidpeic boundary conditions. The 2-D os-
cillator states are chosen to retain rotational symmetoygb direction and they are characterized
by their principal quantum numbarand orbital quantum numben. Adoption of this basis is also
consistent with recent developments in AAS/CFT correspocel with QCD [19]. Note, however,
that the choice of basis functions is arbitrary except fergtandard conditions of orthonormality
and completeness.

In our initial applications, we focus on QED and considertays in a transverse scalar har-
monic trap [20]. This setup will be useful for addressing age of strong field QED problems
such as electron-positron pair production in relativisgavy-ion collisions and with ultra-strong
pulsed lasers planned for the future. We adopt the sect@ndiemt non-perturbative renormaliza-
tion scheme [21].

The chosen basis allows the imposition of symmetry comggdhat reduce the Hamiltonian
matrix dimension considerably. For example, we impose tmsttaint of a fixed total magnetic
projection (,) and fixed total longitudinal momentum in dimensionlesgsuf) consistent with
longitudinal boost invariance. We also impose a cutoff ia Bock space basis controlling the
number of fermion and boson degrees of freedom and we imposé an the maximum total 2-D
oscillator quantaNmay in the basis. We then investigate how the non-perturbaiggalts depend
on the cutoffs and seek to obtain results in the continuurt lhere the cutoffs are removed.

The total light-front Hamiltonian i8l = Hp+V (KH gives the invariant mass-squared) where
the unperturbed Hamiltoniadg for this system is defined by the sum of the occupied modes with
the scale set by the combined constAft= 2MyQ with Q representing the harmonic oscillator
frequency:

, (4.1)

N2 _2n 1 N2
Ho = 2MoP; = - 5 n|+|m|; +¥/
|

wherem is the mass of the partonandx; is its light-front momentum fraction. We keep the
photon mass set to zero and the electron nmasis set at the physical mass 0.511 MeV in our
non-renormalized calculations. We also Bkt= me. The interaction vertices are taken directly
from light-front quantized QED in the light-front gauge aark used to generate the interaction
matrix elements in the basis. Considerable analytical amdemnical efforts are required to achieve
an efficient evaluation scheme for these matrix elements.

We can extend this approach to QCD by implementing the SW(8) degree of freedom for
each parton - 3 colors for each fermion and 8 for each bosonha¥e investigated two methods
for implementing the global color singlet constraint. Ire tfirst case, we follow Ref. [22] by
constraining all color components to have zero color ptmacand adding a Lagrange multiplier
term to the Hamiltonian to select global color singlet eggates. In the second case, we restrict the
basis space to global color singlets [4, 23]. The second edgbhoduces a factor of 30-40 lower
many-parton basis space dimension at the cost of increasegutation time for matrix elements.
Either implementation provides an exact treatment of tbeal color symmetry constraint but the
use of the second method provides overall more efficient fiseroputational resources.
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5. Conclusion

The short history of light-front Hamiltonian field theoryafieres many advances that pave
the way for non-perturbative solutions of gauge theoriebe goal is to evaluate the light-front
amplitudes for strongly interacting composite systemsgedict experimental observables. High
precision tests of the Standard Model may be envisioned hasvapplications to theories beyond
the Standard Model.

Following successful methods ab initio nuclear many-body theory, we have introduced a
basis light-front quantization (BLFQ) approach to Hammiltn quantum field theory and illus-
trated some of its key features with a cavity mode treatme@ED. We have developed methods
for treating color in order to extend the light-front BLFQpatpoch to QCD. The computational
requirements of this approach are substantial, and wederesgtensive use of leadership-class
computers to obtain practical results.
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