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Non-perturbative solutions to the quantum-field theory is atopic of current and broad interest,

especially for the heavy ion and laser physics communities,since they investigate particle pro-

duction in the presence of strong external fields. We have solved a non-perturbative QED +

external field problem of an electron in a strong transverse confining potential using Hamiltonian

light-front quantum field theory in a basis function representation. The invariant mass spectra and

the anomalous magnetic moment of the lowest state for this two-scale system are also evaluated.

With this method the perturbative QED results are also reproduced with a good accuracy. We also

discuss the extension of the method to other problems as well.
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1. Motivation

The Hamiltonian light-front formalism is ideal for solvingproblems non-perturbatively, since
time is set along the light-front and evaluated experimental observbles, such as masses, form fac-
tors, and structure function, are Lorentz frame independent. Light-front Hamiltonian quantum field
theory also has similarities with non-relativistic quantum many-body theory. This connection was
exploited in [1], where a “Basis Light Front Quantized (BLFQ)" approach was outlined by adopting
a light-front single-particle basis space consisting of the 2-D harmonic oscillator for the transverse
modes and a discretized momentum space basis for the longitudinal modes. Adoption of this basis
is also consistent with recent developments in AdS/CFT correspondence with QCD [2].

In [3] this approach was applied to address the problem of an electron in a transverse harmonic
cavity with the QED Hamiltonian evaluated on the light-front in a Fock space consisting of electron
states and electron plus photon states. The external field was included non-perturbatively and the
eigenvalues, eigenvectors and anomalous magnetic moment were solved. In a non-renormalized
case, the obtained electron anomalous magnetic moment was within 1.5% of the theoretically ex-
pected result (Schwinger moment), when extrapolated to thezero external field limit. Applying
a sector-dependent renormalization scheme [4] to this Hamiltonian, the zero external field results
were consistent with related works Refs.[5, 6] and Refs.[7,8], where the one-photon truncated
light-front Hamiltonian was regulated with a Pauli-Villars regularization scheme.

The nonperturbative analysis presented in [3] could be applicable to measurements of the
(gyromagnetic) ratio of the spin precession to Larmor frequencies of a trapped electron in strong
external electromagnetic fields, and can be straightforwardly extended by incorporating higher
Fock-space sectors. It also serves as a first step towards thestudies of non-perturbative QED
relevant for the anomalous enhancement of lepton production at RHIC [9] and for proposals for
producing super-critical fields with next-generation laser facilities [10, 11]. Another direction for
QED applications follows the lines of [12, 13], where Fourier transform of the Deeply Virtual
Compton Scattering amplitude with respect to the skewness variableζ at fixed invariant momentum
transfer was observed to be analogous to the diffractive scattering of a wave in optics. In analogy
with this "hadron optics", the light-front electron wave functions computed in [3] can be used to
evaluate the form factors of the electron and thereby introduce "electron optics".

Most importantly, the research in [1, 3] also serves as a foundation for solving other quantum
field theories at strong coupling, such as the light-front QCD Hamiltonian in the nonperturbative
domain. In order to extend the research to QCD, methods for treating the color degree of freedom
in a computationally efficient manner were already introduced and evaluated in [1] . The next step
is then to incorporate the color degree of freedom into the quantum field theory code, that has
already passed an important accuracy test in [3].

We will next review the method used in [1, 3], adding some details not previously discussed.

2. BLFQ Hamiltonian Framework

In BLFQ approach the Hamiltonian is expressed in terms of basis functions, and the size of the
resulting Hamiltonian matrix is regulated by imposing bothphysical symmetries and different cut-
off conditions for the basis states. Increasing the size of the basis will inevitably lead to substantial
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computational requirements both in the computation of the matrix elements themselves and in the
diagonalization of the matrix. In order to be able to extrapolate the results to the continuum limit,
where the cut-offs are removed, a rapid convergence of the results is then highly desirable.

We define our light-front coordinates asx± = x0 ± x3, x⊥ = (x1,x2), where the variablex+

is light-front time andx− is the longitudinal coordinate. We adoptx+ = 0, the “null plane", for
our quantization surface. In our choice of framework [1, 3] we quantize QED on the light-front
using the light-front gauge, and add the harmonic oscillator potential in the transverse direction to
confine the system in those directions. To simplify the numerical work, we choose the transverse
basis function scale and the trap scale to coincide. As a consequence, we cannot obtain zero
external field QED results directly, but via extrapolation,as shown later.

Our basis states consist of 2-D harmonic oscillator (HO) states, which are combined with
discretized longitudinal modes, plane waves satisfying selected boundary conditions. The HO
states are characterized by a principal quantum numbern, orbital quantum numberm and HO
energyΩ. We express the 2-D oscillator in momentum space as a function of the dimensionless
variableρ = |p⊥|/

√
M0Ω, whereM0 has units of mass. The orthonormalized HO wavefunctions in

polar coordinates(ρ ,ϕ) are then given in terms of the Generalized Laguerre Polynomials,L|m|
n (ρ2),

by

Φnm(p⊥) = Φnm(ρ ,ϕ) = 〈ρϕ |nm〉 =

√

2π
M0Ω

√

2n!
(|m|+ n)!

eimϕ ρ |m|e−ρ2/2L|m|
n (ρ2), (2.1)

with eigenvaluesEn,m = (2n+ |m|+1)Ω. These wavefunctions are orthogonal and form a complete
set of states, thus

∑
nm

Φ∗
nm(p⊥)Φnm(q⊥) = (2π)2δ (2)(p⊥−q⊥). (2.2)

The longitudinal modes,ψk, in our basis are defined for−L ≤ x− ≤ L with periodic boundary
conditions (PBC) for the photon and antiperiodic boundary conditions (APBC) for the electron:

ψk(x
−) =

1√
2L

ei π
L k x− , (2.3)

wherek = 1,2,3, ... for PBC (we neglect the zero mode) andk = 1
2, 3

2, 5
2, ... for APBC. The full 3-D

single-particle basis state is defined by the product form

Ψk,n,m(x−,ρ ,ϕ) = ψk(x
−)Φn,m(ρ ,ϕ). (2.4)

Following Ref.[14] we introduce the total invariant mass-squaredM2 for the low-lying phys-
ical states in terms of a HamiltonianH times a dimensionless integer for the total light-front mo-
mentumK

M2+ P⊥P⊥ → M2+ const = P+P− = KH (2.5)

where we absorb the constant intoM2. The non-interacting HamiltonianH0 for this system (where
now the transverse functions for both the fermion and the boson are taken as eigenmodes of the
trap) is then defined by the sum of the occupied modesi in each many-parton state as

H0 = 2M0P−
c =

2M0Ω
K ∑

i

2ni + |mi|+1+ m̄2
i /(2M0Ω)

xi
, (2.6)
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wherem̄i is the mass of the partoni. The photon mass is always set to zero in the following and the
electron mass ¯me is set at the physical mass 0.511 MeV in our non-renormalizedcalculations. We
also setM0 = m̄e.

The basis is limited to fermion and fermion-boson states, sothe light-front QED Hamiltonian
interaction terms we need are the fermion to fermion-boson vertex, given as

Ve→eγ = g
∫

dx+d2x⊥Ψ(x)γµΨ(x)Aµ (x)

∣

∣

∣

∣

x+=0
, (2.7)

and the instantaneous fermion-boson interaction,

Veγ→eγ =
g2

2

∫

dx+d2x⊥ ΨγµAµ
γ+

i∂+
(γνAνΨ)

∣

∣

∣

∣

x+=0
, (2.8)

where the coupling constantg2 = 4πα , andα is the fine structure constant taken to beα = 1
137.036.

When expressing the free fermion and boson fields in terms of our basis functions, the complete
set of quantum numbers needed to specify a state areᾱ = (k,n,m,λ ), whereλ is the helicity. The
fermion and boson annihilation operators are then written as

b(p⊥,α) = ∑
nm

b(ᾱ)Φnm(p⊥), (2.9)

a(p⊥,γ) = ∑
nm

a(γ̄)Φnm(p⊥), (2.10)

where

[a(γ̄),a†(γ̄ ′)] = δ γ̄ ′
γ̄ , (2.11)

{b(ᾱ),b†(ᾱ ′)} = δ ᾱ ′
ᾱ , (2.12)

and the truncated set of quantum numbersα = (k,λ ). After this replacement and proper nor-
malization, the non-spinflip vertex terms of Eq.(2.7) are∝ M0Ω, similar to the non-interacting
Hamiltonian of Eq.(2.6), whereas spinflip terms are∝

√
M0Ωme. Selecting the initial state fermion

helicity in the single fermion sector always as “up”, the processe → eγ is nonzero for 3 out of 8
helicity combinations, and the processeγ → eγ is nonzero only when all 4 spin projections aligned
(2 out of 16 combinations). The resulting Hamiltonian matrix is thus sparse.

As a symmetry constraint for the basis we fix the total angularmomentum projectionJz =

M + S = 1
2, whereM = ∑i mi is the total azimuthal quantum number, andS = ∑i si the total spin

projection along thex− direction. For cutoffs, we select the total light-front momentum,K, and the
maximum total quanta allowed in the transverse mode of each one or two-parton state,Nmax, such
that

∑
i

xi = 1 =
1
K ∑

i

ki, (2.13)

∑
i

2ni + |mi|+1≤ Nmax, (2.14)

where, for example,ki defines the longitudinal modes of Eq.(2.3) for theith parton. Eq.(2.13)
signifies total light-front momentum conservation writtenin terms of boost-invariant momentum
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fractions,xi. Since each parton carries at least one unit of longitudinalmomentum, the basis is
limited to K partons. Furthermore, since each parton carries at least one oscillator quanta for
transverse motion, the basis is also limited toNmax partons. Thus the combined limit on the number
of partons would be min(K,Nmax), if the Fock space was not truncated.

3. BLFQ Hamiltonian results

Here we present some numerical results from [3] for cases where the cutoffs for the basis
space dimensions are selected such thatK increases simultaneously with theNmax. The resulting
dimension of the Hamiltonian matrix increases rapidly. ForNmax = K = 2,10,20, the dimensions
of the corresponding symmetricd × d matrices ared = 2, 1670, 26990, respectively. Since we
employ a mix of boundary conditions and all states have half-integer totalK, we quoteK-values
rounded downwards for convenience, except when the precisevalue is required.
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Figure 1: Eigenvalues (multiplied byK) for a non-renormalized light-front QED Hamiltonian whichin-
cludes the fermion-boson vertex and the instantaneous fermion-boson interaction without counterterms (fig-
ure adapted from [3]). Closeup of the lowest-lying eigenvalues on the right panel. The basis is limited to
fermion and fermion-boson states satisfying the symmetries. The cutoffs for the basis space dimensions are
selected such thatK increases simultaneously with theNmax.

In the left panel of Fig.1 we show the eigenvalues (multiplied by K) for a non-renormalized
light-front QED Hamiltonian given in Eqs.(2.6,2.7,2.8), with fixed Ω = 0.05 MeV. In the right
panel we show a closeup of the lowest-lying eigenvalues only. These eigenvalues correspond to
a solution dominated by the electron withn = m = 0, and are expected to beKE0 = m2

e + M0Ω,
where the latter term accounts for the lowest state of transverse motion of the electron allowed in
the chosen basis. In Fig.1 the lowest eigenvalues for a fixedΩ fall below that value, as the size
of the matrix increases. The contribution of the spinflip terms to the lowest eigenvalues is very
small, and, as a result, the lowest eigenvalues for a fixedNmax = K depend linearly onΩ. Since our
system is in an external field, the lowest physical mass eigenstate (not known experimentally) can
deviate from the free-space mass. Therefore, before renormalization, we choose only to consider
cases where the mass eigenvalue falls within 25% of the free electron mass.
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The ordering of excited states in Fig.1, due to significant interaction mixing, does not always
follow the highly degenerate unperturbed spectrum of Eq.(2.6). States dominated by spin-flipped
electron-photon components are evident in the solutions. Nevertheless, the lowest-lying eigen-
values appear with nearly harmonic separations in Fig.1 as would be expected at the coupling of
QED. The multiplicity of the higher eigenstates increases rapidly with increasingNmax = K and
the states exhibit stronger mixing with other states than the lowest-lying states. In principle the
fermion-boson basis states interact directly with each other in leading order through the instanta-
neous fermion-boson interaction, but numerically the effect of this interaction is very weak, and
thus does not contribute significantly to the mixing. Even though we work within a Fock space
approach, our numerical results should approximately equal the lowest order perturbative QED
results for sufficiently weak external field.
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Figure 2: (Color online) Square root of the (scaled) electron anomalous magnetic moment as a function of
the transverse external field for a sequence of increasing basis spaces indicated in the legend. These are non-
renormalized results where the mass eigenvalue falls within 25% of the free electron mass. Extrapolation
to zero external field yields 0.1121, compared with the theoretical 1-loop QED prediction ("Schwinger") of
0.1125. Figure is adapted from [3].

In Fig.2 we show the results for the square root of the electron anomalous magnetic moment
(scaled),

√

δ µ/g2, as a function ofΩ obtained from the lowest mass eigenstate. That is, we plot
the magnitude of the probability amplitude that the electron has its spin flipped relative to the single
electron Fock-space component in the range where the results are converged. For evenNmax = K
the results converge rapidly forNmax = K ≥ 14. The results for odd cutoffs (not shown) track even
cutoff results asNmax = K increases. BelowΩ <∼0.05 MeV (results not shown), in the weak external
field region, all the interactions are quenched at fixedNmax = K, and not converged, due in part to
our requirement that the HO basis states track the external field. In order to compare our results
with the square root of the ratio of the Schwinger resultα

2π for the coupling constantg2 = 4πα , we
perform an extrapolation of the above results forNmax = K = 12, . . . ,20 to the zero external field
limit Ω = 0 Mev. An excellent agreement with the results is obtained bya fit function f (Ω) =

a(1+ bΩ2 + cΩ4)exp(−dΩ), with a = 0.1121. This is< 1% deviation from the Schwinger result
of 0.1125, which is reasonable in light of our numerical accuracy and extrapolation uncertainties.
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Figure 3: (Color online) Individual fits to the renormalized results for square root of the (scaled) electron
anomalous magnetic moment forNmax = K = 10, . . . ,20. The inset shows the continuum limit extrapolation
of the zero external field results from the main panel as a function of 1/K. Figure is adapted from [3].

In Fig.3 we renormalize our results for
√

δ µ/g2 by applying a sector-dependent normalization
scheme from Ref.[4]. In our present limited Fock space, we need only the mass countertermδme.
Thisδme is added to the mass term in the diagonal one-electron part ofthe Hamiltonian Eq.(2.6). In
the absence of a known experimental mass for renormalization due to the external field, we adjust
δme such that the lowest eigenstate remains atKE0 = m2

e + M0Ω. To eliminate possible effects
from the quenched interactions at small external fields, we only include results with the external
field Ω ≥ 0.2 MeV. Again, individual fits of the form given Fig.2 in are an excellent representation
of our results. The range of the extrapolated values is 0.1077≤ a ≤ 0.1216.

The convergence with an increasing cutoff is now less rapid than in the non-renormalized case
shown Fig.2. In order to approach the continuum limitNmax = K → ∞, we perform further extrap-
olation to the zero-Ω results of Fig.3. The inset of Fig.3 shows linear extrapolation of the results
of the main figure in 1/K to the continuum limitNmax = K → ∞. To verify the stability of the
results, an extrapolation based on theΩ ≥ 0.1 MeV fits (not shown) is also given. The extrapolated
continuum values are 0.1362 (0.1383) forΩ ≥ 0.2(0.1), respectively, and thus about 20% above
the Schwinger result 0.1125. As mentioned in Sec.1, an enhancement of this magnitude was also
observed in related works, Ref.[6] and Refs.[7, 8], where one-photon truncated light-front Hamil-
tonian was regulated with Pauli-Villars (PV) regularization scheme. With PV regularization as well
as in our renormalized results, interpreted from a perturbation theory perspective, the intermedi-
ate state propogators are developed from a dynamical (non-perturbative) electron mass rather than
using the unperturbed mass needed for direct comparison with perturbation theory. Thus one may
appreciate why the renormalized results are distinct from the lowest order perturbative results.

The extension of this method both to a larger Fock-space and to QCD will proceed as outlined
in [1]. In the case of non-interacting QED, the state densityas a function of the state energyE, given
by Eq.(2.6), was found to increase exponentially asNmax = K increases. Similarly, implementation
of the color dramatically increases the state density over the case of QED, as shown in Fig.4, but it
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was also found, that use of a global color-singlet constraint is effective in minimizing the explosion
in basis space states. We anticipate to be able to handle bothof these challenges with the parallel
codes developed, tested and applied in [1, 3], that compute the Hamiltonian matrix and solve for
its eigenvalues and eigenvectors
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Figure 4: Number of color space states that apply to space-spin configuration of selected multi-parton
states for two methods of enumerating the color basis states. The upper curve shows counts of all color
configurations with zero color projection. The lower curve counts global color singlets. Figure adapted
Ref.[1].
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