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1. Motivation

The Hamiltonian light-front formalism is ideal for solvimoblems non-perturbatively, since
time is set along the light-front and evaluated experinlesitaervbles, such as masses, form fac-
tors, and structure function, are Lorentz frame indepenhddght-front Hamiltonian quantum field
theory also has similarities with non-relativistic quamtmany-body theory. This connection was
exploited in [1], where a “Basis Light Front Quantized (BLF@pproach was outlined by adopting
a light-front single-particle basis space consisting ef2hD harmonic oscillator for the transverse
modes and a discretized momentum space basis for the Idimgittmodes. Adoption of this basis
is also consistent with recent developments in AdS/CFTespondence with QCD [2].

In [3] this approach was applied to address the problem ofeatren in a transverse harmonic
cavity with the QED Hamiltonian evaluated on the light-frama Fock space consisting of electron
states and electron plus photon states. The external fieddngluded non-perturbatively and the
eigenvalues, eigenvectors and anomalous magnetic monezatsslved. In a non-renormalized
case, the obtained electron anomalous magnetic moment itfdn W.5% of the theoretically ex-
pected result (Schwinger moment), when extrapolated t@éne external field limit. Applying
a sector-dependent renormalization scheme [4] to this Kaman, the zero external field results
were consistent with related works Refs.[5, 6] and Ref$8]7 where the one-photon truncated
light-front Hamiltonian was regulated with a Pauli-Viltaregularization scheme.

The nonperturbative analysis presented in [3] could beiegigle to measurements of the
(gyromagnetic) ratio of the spin precession to Larmor festgies of a trapped electron in strong
external electromagnetic fields, and can be straightfatlyagxtended by incorporating higher
Fock-space sectors. It also serves as a first step towardstutiees of non-perturbative QED
relevant for the anomalous enhancement of lepton produeidRHIC [9] and for proposals for
producing super-critical fields with next-generation laiseilities [10, 11]. Another direction for
QED applications follows the lines of [12, 13], where Fouti@ansform of the Deeply Virtual
Compton Scattering amplitude with respect to the skewnasahle at fixed invariant momentum
transfer was observed to be analogous to the diffractiviéesosy of a wave in optics. In analogy
with this "hadron optics", the light-front electron wavenftiions computed in [3] can be used to
evaluate the form factors of the electron and thereby intted'electron optics".

Most importantly, the research in [1, 3] also serves as adatian for solving other quantum
field theories at strong coupling, such as the light-frontBQi@amiltonian in the nonperturbative
domain. In order to extend the research to QCD, methodsdatitrg the color degree of freedom
in a computationally efficient manner were already intragtband evaluated in [1] . The next step
is then to incorporate the color degree of freedom into thentum field theory code, that has
already passed an important accuracy test in [3].

We will next review the method used in [1, 3], adding some itketet previously discussed.

2. BLFQ Hamiltonian Framework

In BLFQ approach the Hamiltonian is expressed in terms dgldaactions, and the size of the
resulting Hamiltonian matrix is regulated by imposing bpttysical symmetries and different cut-
off conditions for the basis states. Increasing the sizé@biasis will inevitably lead to substantial
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computational requirements both in the computation of tia¢rimelements themselves and in the
diagonalization of the matrix. In order to be able to exttapothe results to the continuum limit,
where the cut-offs are removed, a rapid convergence of thdtsais then highly desirable.

We define our light-front coordinates a$ = x° +x3, x* = (x!,x?), where the variablec
is light-front time andx~ is the longitudinal coordinate. We adapt = 0, the “null plane”, for
our quantization surface. In our choice of framework [1, 3 gquantize QED on the light-front
using the light-front gauge, and add the harmonic oscillptiiential in the transverse direction to
confine the system in those directions. To simplify the nuoaémwork, we choose the transverse
basis function scale and the trap scale to coincide. As aecpm@mce, we cannot obtain zero
external field QED results directly, but via extrapolatias,shown later.

Our basis states consist of 2-D harmonic oscillator (HOdestawhich are combined with
discretized longitudinal modes, plane waves satisfyingcsed boundary conditions. The HO
states are characterized by a principal quantum numberbital quantum numbem and HO
energyQ. We express the 2-D oscillator in momentum space as a funofithe dimensionless
variablep = |p*|/v/MoQ, whereMg has units of mass. The orthonormalized HO wavefunctions in
polar coordinate$p, ¢ ) are then given in terms of the Generalized Laguerre Polyatssmu'm| (p?),

by
Prm(p) = Prm(p, @) = (P [nM) = 4/ I\z;, / (|m|21! > ™ plMe /2L M (p?), (2.1)

with eigenvalue&, m = (2n+|m|+1)Q. These wavefunctions are orthogonal and form a complete
set of states, thus

> @m(P")Pm(a’) = (20?6 (p" ) (2.2)

The longitudinal modegjk, in our basis are defined ferL < x~ < L with periodic boundary
conditions (PBC) for the photon and antiperiodic boundamditions (APBC) for the electron:

_ 1 ogmee
V2L ’

wherek = 1,2,3, ... for PBC (we neglect the zero mode) ake- 3,3, 3. ... for APBC. The full 3-D
single-patrticle basis state is defined by the product form

Wenm(X,0,0) = (X )®Pam(p,9). (2.4)

Following Ref.[14] we introduce the total invariant masgsaredM? for the low-lying phys-
ical states in terms of a Hamiltonidth times a dimensionless integer for the total light-front mo-
mentumK

(2.3)

M2+ P, P, —M?+congt = PTP~ =KH (2.5)

where we absorb the constant iMtF. The non-interacting Hamiltoniafg for this system (where
now the transverse functions for both the fermion and theha@se taken as eigenmodes of the
trap) is then defined by the sum of the occupied made®ach many-parton state as

2MoQ < 2ni + |my| + 1+ ¥/ (2MoQ)
=3 . , 2.6)

Ho =2MoP; =
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wherem is the mass of the partanThe photon mass is always set to zero in the following and the
electron massn is set at the physical mass 0.511 MeV in our non-renormalczgclulations. We
also setMp = Me.

The basis is limited to fermion and fermion-boson stateshedight-front QED Hamiltonian
interaction terms we need are the fermion to fermion-bosatex, given as

Ve ey =0 / dx; d%x; W(X)yHW(x)A,(X) , (2.7)
x+=0
and the instantaneous fermion-boson interaction,
92 20 W y*
Veyooy = < / dx. d?x, OyrA, X (yaw)| (2.8)
2 g+ =0

where the coupling constagt = 4mta, anda is the fine structure constant taken tode- 5.
When expressing the free fermion and boson fields in termaiobasis functions, the complete
set of quantum numbers needed to specify a stater atgk,n,m,A), whereA is the helicity. The
fermion and boson annihilation operators are then writeen a

= 2. b(@)®an(p), (2.9)
= ;na (¥V)®om(pH), (2.10)
where
a(y),a'(y)] = 5y7,_ (2.11)
{b(a),b'(a")} = &2, (2.12)

and the truncated set of quantum numbers- (k,A). After this replacement and proper nor-
malization, the non-spinflip vertex terms of Eq.(2.7) arévipQ, similar to the non-interacting
Hamiltonian of Eq.(2.6), whereas spinflip terms &rg/MpoQme. Selecting the initial state fermion
helicity in the single fermion sector always as “up”, the qggese — ey is nonzero for 3 out of 8
helicity combinations, and the process— ey is nonzero only when all 4 spin projections aligned
(2 out of 16 combinations). The resulting Hamiltonian maisithus sparse.

As a symmetry constraint for the basis we fix the total angatlamentum projectiod, =
M +S= 1, whereM = y;m is the total azimuthal quantum number, @®e- 3;s the total spin
projection along the direction. For cutoffs, we select the total light-front mentum K, and the
maximum total quanta allowed in the transverse mode of eaelbotwo-parton staté\n.x, such
that

leizlz%IZki, (2.13)

ZZniHming Niax, (2.14)
|

where, for examplek; defines the longitudinal modes of Eq.(2.3) for ffeparton. Eq.(2.13)
signifies total light-front momentum conservation writtenterms of boost-invariant momentum
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fractions,x;. Since each parton carries at least one unit of longitudimamentum, the basis is
limited to K partons. Furthermore, since each parton carries at leastosaillator quanta for
transverse motion, the basis is also limitedNfgy partons. Thus the combined limit on the number
of partons would be mifiK,Nmx), if the Fock space was not truncated.

3. BLFQ Hamiltonian results

Here we present some numerical results from [3] for casegevtiee cutoffs for the basis
space dimensions are selected such khaicreases simultaneously with tiNg.x. The resulting
dimension of the Hamiltonian matrix increases rapidly. Rgg = K = 2,10,20, the dimensions
of the corresponding symmetrit x d matrices ared = 2, 167Q 26990, respectively. Since we
employ a mix of boundary conditions and all states have in&diger totalk, we quoteK-values
rounded downwards for convenience, except when the prealse is required.
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Figure 1. Eigenvalues (multiplied b¥) for a non-renormalized light-front QED Hamiltonian whiah
cludes the fermion-boson vertex and the instantaneousdarbroson interaction without counterterms (fig-
ure adapted from [3]). Closeup of the lowest-lying eigenealon the right panel. The basis is limited to
fermion and fermion-boson states satisfying the symnetiidde cutoffs for the basis space dimensions are
selected such th#t increases simultaneously with thig.

In the left panel of Fig.1 we show the eigenvalues (multipliy K) for a non-renormalized
light-front QED Hamiltonian given in Egs.(2.6,2.7,2.8)jthvfixed Q = 0.05 MeV. In the right
panel we show a closeup of the lowest-lying eigenvalues. ofihese eigenvalues correspond to
a solution dominated by the electron with= m= 0, and are expected to ey = m§+ MoQ,
where the latter term accounts for the lowest state of trersgvmotion of the electron allowed in
the chosen basis. In Fig.1 the lowest eigenvalues for a fixdall below that value, as the size
of the matrix increases. The contribution of the spinfliprierto the lowest eigenvalues is very
small, and, as a result, the lowest eigenvalues for a fikggd = K depend linearly of2. Since our
system is in an external field, the lowest physical mass stgén (not known experimentally) can
deviate from the free-space mass. Therefore, before reaimation, we choose only to consider
cases where the mass eigenvalue falls within 25% of the festren mass.
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The ordering of excited states in Fig.1, due to significatéraction mixing, does not always
follow the highly degenerate unperturbed spectrum of E§)(2States dominated by spin-flipped
electron-photon components are evident in the solutionsveMheless, the lowest-lying eigen-
values appear with nearly harmonic separations in Fig.1@addwe expected at the coupling of
QED. The multiplicity of the higher eigenstates increasgsdly with increasingNmax = K and
the states exhibit stronger mixing with other states thanldlwest-lying states. In principle the
fermion-boson basis states interact directly with eacleroith leading order through the instanta-
neous fermion-boson interaction, but numerically theatffe this interaction is very weak, and
thus does not contribute significantly to the mixing. Eveoutjh we work within a Fock space
approach, our numerical results should approximately letigalowest order perturbative QED
results for sufficiently weak external field.
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Figure2: (Color online) Square root of the (scaled) electron anommtlnagnetic moment as a function of
the transverse external field for a sequence of increasisig bpaces indicated in the legend. These are non-
renormalized results where the mass eigenvalue falls wi2bP6 of the free electron mass. Extrapolation
to zero external field yields 0.1121, compared with the tbgoal 1-loop QED prediction ("Schwinger") of
0.1125. Figure is adapted from [3].

In Fig.2 we show the results for the square root of the electrmomalous magnetic moment
(scaled),\/du/g?, as a function of2 obtained from the lowest mass eigenstate. That is, we plot
the magnitude of the probability amplitude that the elettras its spin flipped relative to the single
electron Fock-space component in the range where the sematconverged. For evéyax = K
the results converge rapidly fdin.x = K > 14. The results for odd cutoffs (not shown) track even
cutoff results adnax = K increases. Belo < 0.05 MeV (results not shown), in the weak external
field region, all the interactions are quenched at fikggy = K, and not converged, due in part to
our requirement that the HO basis states track the extewldl fln order to compare our results
with the square root of the ratio of the Schwinger regifor the coupling constarg® = 4ma, we
perform an extrapolation of the above results g = K =12 ...,20 to the zero external field
limit Q =0 Mev. An excellent agreement with the results is obtained iy function f(Q) =
a(1+bQ? + cQ*) exp(—dQ), with a= 0.1121. This is< 1% deviation from the Schwinger result
of 0.1125, which is reasonable in light of our numerical aacy and extrapolation uncertainties.
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Figure3: (Color online) Individual fits to the renormalized results §quare root of the (scaled) electron
anomalous magnetic moment fdf.x = K = 10,...,20. The inset shows the continuum limit extrapolation
of the zero external field results from the main panel as atfonof 1/K. Figure is adapted from [3].

In Fig.3 we renormalize our results fef o /g? by applying a sector-dependent normalization
scheme from Ref.[4]. In our present limited Fock space, wadranly the mass counterterdm.
This dme is added to the mass term in the diagonal one-electron ptrediamiltonian Eq.(2.6). In
the absence of a known experimental mass for renormalizatie to the external field, we adjust
ome such that the lowest eigenstate remain& &y = m§+ MpQ. To eliminate possible effects
from the quenched interactions at small external fields, alg mclude results with the external
field Q > 0.2 MeV. Again, individual fits of the form given Fig.2 in are axcellent representation
of our results. The range of the extrapolated valueslif/ < a < 0.1216.

The convergence with an increasing cutoff is now less rdmad in the non-renormalized case
shown Fig.2. In order to approach the continuum liMjtx = K — oo, we perform further extrap-
olation to the zerd? results of Fig.3. The inset of Fig.3 shows linear extrapokabf the results
of the main figure in 1K to the continuum limitNyax = K — . To verify the stability of the
results, an extrapolation based on §he- 0.1 MeV fits (not shown) is also given. The extrapolated
continuum values are 0.1362 (0.1383) for> 0.2(0.1), respectively, and thus about 20% above
the Schwinger result 0.1125. As mentioned in Sec.1, an esmagnt of this magnitude was also
observed in related works, Ref.[6] and Refs.[7, 8], where-photon truncated light-front Hamil-
tonian was regulated with Pauli-Villars (PV) regularipatischeme. With PV regularization as well
as in our renormalized results, interpreted from a pertimhatheory perspective, the intermedi-
ate state propogators are developed from a dynamical (adnfpative) electron mass rather than
using the unperturbed mass needed for direct comparisdnpsiturbation theory. Thus one may
appreciate why the renormalized results are distinct frioenlowest order perturbative results.

The extension of this method both to a larger Fock-space@@D will proceed as outlined
in[1]. In the case of non-interacting QED, the state deressty function of the state energygiven
by Eq.(2.6), was found to increase exponentiallfNas = K increases. Similarly, implementation
of the color dramatically increases the state density dwercase of QED, as shown in Fig.4, but it
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was also found, that use of a global color-singlet condtiaiaffective in minimizing the explosion

in basis space states. We anticipate to be able to handleobtitese challenges with the parallel
codes developed, tested and applied in [1, 3], that competélamiltonian matrix and solve for
its eigenvalues and eigenvectors
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Figure 4: Number of color space states that apply to space-spin coafign of selected multi-parton
states for two methods of enumerating the color basis stathe upper curve shows counts of all color
configurations with zero color projection. The lower cunaunts global color singlets. Figure adapted
Ref.[1].
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