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1. Introduction

A careful description of the deuteron, retaining only a finite number of baryonic and mesonic
degrees of freedom, could help to single out new, experimental signatures, related to the underlying
degrees of freedom (see [1, 2] for recent reviews of the QCD effects in the deuteron). In the
present context,careful descriptionmeans an approach that is able to fulfill general properties,like
the extended Poincaré covariance (the discrete symmetriesare included), Hermiticity and current
conservation [3].

Deuteron electromagnetic (em) observables offer a valuable play ground for testing theoretical
ideas (see, e.g., [4]). In particular, the challenges for theorists appear very stimulating in view of the
Th. Jefferson Lab. (TJLAB) upgrading to 12 GeV, that should open very intriguing scenarios, as
described, e.g., in PAC-34 and PAC-35 Reports [5]. But, the list of issues to be coped with is long,
if one would like to address non standard effects, e.g. like the 6-quark bag [1, 2, 4]. In our opinion
(see, also [4]), efforts should be invested on the analysis of: i) the consistency between dynamics
and operatorial structure of the current; ii) the strong interplay between different ingredients, e.g.
between the dynamical content of the two-body currents and the nucleon form factors; iii) the
two-photon exchange effects, that could affect the extraction of the em form factors (though recent
estimates [6] assign them a minor role,∼ 1%); iv) further baryonic degrees of freedom, like isobar
configurations, till now investigated only within a non relativistic approach [7].

Our aim is to include new dynamical two-body contributions into the em current, in a Light-
Front Hamiltonian Dynamics (LFHD) framework (see, e.g., [8] for a review of the Relativistic
Hamiltonian Dynamics), for describing the deuteron em observables, still satisfying the extended
Poincaré covariance. This work expands the investigation carried out in Refs. [9, 10], where a
current operator containing the one-body term and a two-body contribution, needed for satisfying
the Hermiticity, was considered. In the present approach, we add two-body terms with a dynamical
nature, generated by the presence of an explicit one-pion exchange (see also [11]). These two-body
currents are inspired by an exact analysis of the four-dimensional (4D) current corresponding to a
Yukawa model in ladder approximation, where two fermions interact with a pseudoscalar, massive
boson [12] (notice that, within such an approximation, there is no photon-boson coupling. The
4D current corresponding to the field theoretical model is projected onto the three-dimensional
(3D) LF hyperplane, so that one obtains an operator, that i) acts on the 3D LF valence component
of the interacting-system state and ii) automatically fulfills the Ward-Takahashi Identity (WTI).
Moreover, in Ref. [12], it has been shown that one can properly truncate, in the Fock space, the
LF current and still be able to satisfy the correspondingly truncated WTI. In particular, the Fock
expansion is ordered in powers of the interaction. In order to improve the calculations of the em
deuteron observables of Refs. [9, 10], in this work we consider the first-order LF current operator,
obtained by applying the approach of Ref. [12] to an interacting LagrangianL =−igPSΨ̄γ5~τΨ ·~φ ,
whereΨ is the fermion field and~φ an isovector pseudoscalar boson field.

In Sec. 2, the choice of the reference frame and some generalities of our approach will be
presented. In Sec. 3, the current adopted in our LFHD approach will be illustrated. In Sec. 4, the
preliminary results, with only a part of the two-body dynamical contributions, will be shown for
the deuteron magnetic moment. In Sec. 5 summary and perspectives will be presented.
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2. Choosing the frame

Our theoretical frame is the LF Hamiltonian Dynamics combined with the Bakamjian-Thomas
construction [13] of the Poincaré generators for an interacting system. Within such a framework,
as it is well known, a relativistic square mass operator of a two-body system can be immediately
identified with the Schrödinger equation for that system [14]. This allows one to formally embed
the standardnon relativisticdeuteron wave function into a fully Poincaré covariant description. The
only particular care is the treatment of the spin part, wherethe Melosh rotation operators [15] are
requested (see, e.g., [10] for details). Therefore, withinthe previous approach, one can rigorously
fulfill the Poincaré covariance, for an interacting system with a finite number of degrees of freedom.
Heuristically, one could say that the Relativistic Hamiltonian Dynamics with a Bakamjian-Thomas
construction allow one to implement a description of an interacting system that falls between the
non-relativistic quantum mechanics and local relativistic field theories. This simple view is further
strengthened onto the LF hyperplane, since in this case a sharp and clean separation between the
center of mass motion and the intrinsic one can be straightforwardly achieved. Let us also notice
that the LF boosts are kinematical transformations and thatthe spectral conditionP+ = P0+Pz≥ 0
favors a description with a finite number of degrees of freedom.

The other ingredient for developing our description of the em deuteron form factors is the
reference frame where we calculate the theoretical observables. If one had the complete and cal-
culable theory at disposal, the choice of the frame should not represent an issue, given the full
covariance,. Actually one is dealing with an approximate scheme, and therefore the choice of the
reference frame, where one can more easily implement the constrains for preserving the general
properties, becomes strategic. Following Ref. [3], one canshow that in a Breit frame where the mo-
mentum transfer is longitudinal, i.e.~q⊥ = 0, the symmetry of the physical process can be exploited
for reducing the constraints imposed on the current operator by the extended Poincaré covariance
to a simple rotational covariance around theẑ≡ q̂ -axis. Then, in this frame, any operatorial de-
pendence, fulfilling the rotational covariance around thez−axis, is allowed in the construction of
a current operator, that, in particular, i) depends parametrically upon the CM momenta and ii) acts
on the intrinsic variables. For instance, the matrix elements of the current operator can be approxi-
mated by the ones obtained from one-body Dirac and Pauli currents, and then, since the rotational
covariance is safe, it turns out that the extended Poincaré covariance can be fulfilled by using the
proper transformations (Lorentz boost, rotations, translations etc.). Moreover, in order to imple-
ment the Hermiticity, one has to add a term that contains the dynamical generator of the transverse
rotations, obtaining necessarily a two-body contributionto the current. It should be pointed out
that such a contribution must be distinct from the ones that we are going to discuss in what follows,
since the last ones contain dynamical effects in a more explicit way.

3. Projecting the em current onto the Light-Front hyperplane

In this Section, a brief illustration of the results of Ref. [12], in particular the ones directly
relevant for the present calculations, is given.

In Refs. [17, 18, 19, 12], by using the projection of the 4D physical quantities onto the 3D
LF hyperplane (i.e.x+ = x0 + x3 = 0), and the Quasi-Potential approach for the Transition Ma-
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trix [16], it has been established a formally exact, one-to-one correspondence between i) the 4D
Bethe-Salpeter amplitude of an interacting system and the 3D LF valencecomponent, ii) the ma-
trix elements of the 4D em current and of the LF current, both fulfilling the proper Ward-Takahashi
identity. The previous two ingredients allow one to keep separate thetrivial propagation in the
global time (∑1,N x+

i for a system withN constituents), and to focus on the dependence upon the
relative-time propagation, governed by the internal dynamics of the system. In particular, within
this approach, the valence component is found to be the eigensolution of a 3D dynamical equation,
with an effective 3D interaction that is exactly related to the 4D kernel of the BS equation. The ex-
act correspondence between 3D and 4D quantities is accomplished through operators that contain
the 4D interaction and cannot be determined in a simple way. This difficulty can be overcome in a
workable way by developing a possible approximation scheme, for constructing solutions, based on
the Fock expansion of the relevant quantities. If one truncates the Fock space, one can use the cor-
responding truncated Fock basis, in order to expand quantities, like the effective interaction and the
current operator, onto the LF hyperplane. Clearly, by usinga truncated space only the kinematical
symmetries can be satisfied within a field theoretical approach (given the infinite number of degrees
of freedom), but if one restricts to a Relativistic Hamiltonian Dynamics approach, where a finite
number of degrees of freedom is taken into account, then one can adopt the truncated operators
and recover the full Poincaré covariance. In particular, ifthe truncated current contains operators
that satisfy the covariance around thez-axis, and furthermore one uses the valence wave functions,
eigensolution of the properly truncated mass equation, in the evaluation of the matrix elements,
then both the current conservation and the Poincaré covariance can be implemented. It should be
stressed that the truncated mass operator has to properly commute with the Poincaré generators, as
requested by the Bakamjian-Thomas construction.

In the actual calculations, there is another relevant issuefor the LF projection, that makes the
application of the procedure to the fermionic case sharply different from the bosonic one. The Dirac
propagator can be separated in an on-shell term and an instantaneous (in LF time !) propagation,
viz

iS(k) =
/k+m

k2−m2+ iε
=

/kon+m

k+(k−−k−on+ iε
k+ )

+
γ+

2k+
(3.1)

wherek−on = (|k⊥|
2+m2)/k+ is the minus-component ofkµ

on, such thatkon·kon = m2 and the second
term is the instantaneous one, as shown by the Fourier transform in k− andk⊥, i.e.

∫
dk− dk⊥ exp[−i(k−x+/2− ik⊥ ·x⊥)] = (2π)3 δ (x+)δ (x⊥) .

The instantaneous term has a great impact on the analysis of the matrix elements of the current
operator, and it produces very peculiar operatorial structures in the many-body contribution to the
LF current. It should be emphasized that this fact is relatedto our choice of the reference frame,
whereq+ 6= 0, since in this case the extraction of the em form factors involves matrix elements of
both the plus and perp components of the current. In the framewith q+ 6= 0 the Poincaré covariance
can be demonstrated within a LFHD approach [3], and therefore the famousangular conditionissue
(see, e.g. [20]) does not any more plague the matrix elements.

In Ref. [12], the explicit expressions for many-body terms of the em LF current have been
obtained, within a Yukawa model in ladder approximation fortwo fermions. In our approach for
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Figure 1: Diagrammatic analysis of the LF first-order em current, obtained within a Yukawa model in ladder
approximation. In Ref. [12] one can find more details and explicit expressions.

evaluating the em deuteron observables, we take into account the current only up to the first-order
in the interaction (see the next Section), as shown by the diagrammatic representation of Fig. 1. It
is worth noting that one has at least three particles in flight(the LF-time flows from right to left).

4. Preliminary results for the deuteron magnetic moment

In a Breit frame whereq⊥ = 0 and thereforeq+ 6= 0, the matrix elements of the em current
operator for an interacting system can be defined in terms of the LF current and the dynamical
transverse component of the Bakamjian-Thomas rotation generator~S⊥ as follows

jµ(qêz) =
J µ(qêz)

2
+Lµ

ν [rx(−π)] eıπSx
J ν(qêz)

∗

2
e−ıπSx (4.1)
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whereLµ
ν [rx(−π)] is the 4D representation of theπ-rotation around thex-axis, and generates a term

necessary for implementing Hermiticity. In Eq. (4.1), the operatorJ µ(qêz) is given by

J µ(qêz) = jµ
one+ jµ

two = Π0J
µ

0 Π0+ Π0
[
V∆0J

µ
0 +J µ

0 ∆0V
]

Π0 (4.2)

whereΠ0 is the so calledfree reverse LF projectorof Ref. [12], that singles out the positive-
energy sector (modulo some kinematical factors)and∆0 ≡ Gf ree−Gglob, with Gf ree the standard
two-fermion free propagator andGglob an auxiliary Green’s function, that takes into account the
global-time propagation. The operatorV is the interaction, mediated by a pion (see also [11])

V = i g2 ~τ1 ·~τ2
γ5

1 ⊗ γ5
2 F 2[(p̂2− p̂1)

2]

[(p̂2− p̂1)2−m2
π + iε ]

(4.3)

with F [(p̂2 − p̂1)
2] the 4D vertex form factor counterpart of the nonrelativistic vertex function

of Ref. [21]. The quantities with hats represent proper operators. In Eq. (4.2), the one-body
contribution (see [9, 10] for details) is obtained from

J µ
0 = ∑

i=1,2

[
Jµ

pi(0)
(1+ τ3i)

2
+Jµ

ni(0)
(1− τ3i)

2

]
(4.4)

where the free nucleon current is

Jµ
N = −F2N[(p̂′− p̂)2]

(pµ + p′µ)

2M
+ γµ(F1N[(p̂′− p̂)2]+F2N[(p̂′− p̂)2]) (4.5)

with F1N andF2N the Dirac and Pauli form factors, respectively.
What about current conservation and charge normalization?In the chosen Breit frame, current

conservation and charge normalization read respectively as follows

〈Pf ,d| j
+(qêz)|d;Pi〉 = 〈Pf ,d| j

−(qêz)|d;Pi〉 (4.6)

and

〈Pi,d| j
+(0))|d;Pi〉 = 〈Pi,d|

1
2

[
J +(0)+J −(0)

]
|d;Pi〉 = e (4.7)

If WTI is fulfilled, then one obtains the current conservation, once matrix elements are taken be-
tween eigensolutions of the mass equation constructed fromthe proper Green’ function. This is not
the case in our phenomenological calculations, since we areadopting the deuteron wave functions
corresponding to realistic interaction, like CD-Bonn [21]or AV18 [22]. But, in the elastic processes
like the one we are considering, current conservation follows after implementing Hermiticity [3],
given by (note the change of thez-axis)

〈Pf ,d| j
µ (qêz)|d;Pi〉 = 〈Pi,d| j

µ (−qêz)|d;Pf 〉
∗ (4.8)

Notice that the charge normalization can be fulfilled if in Eq. (4.1) one defines

〈Pi,d|J
−(0)|d;Pi〉 = 〈Pi,d|J

+(0)|d;Pi〉 (4.9)

This leads to assume that such an equality holds for any momentum transfer. It should be pointed
out that for evaluating the em observables onlyj+(qêz) and j1(2)(qêz) are relevant.

6



P
o
S
(
L
C
2
0
1
0
)
0
1
1

Elastic electron-deuteron and Light-Front Hamiltonian Dynamics Giovanni Salmè

Preliminary results for the magnetic moment of the deuteronhave been obtained by retaining
only the two-body interaction terms, corresponding to the diagrams depicted in the first line of
Fig. 1, and with the explicit expressions given in Ref. [12] (modulo the isospin dependence and
the pseudoscalar coupling). The nucleon form factors adopted in the calculations are the ones
of Ref. [23], that are in nice agreement with the most recent measurements of the proton form
factors (see, e.g., [25]) and represent a first microscopical interpretation of the possible zero in
the ratioµpGp

E/Gp
M for Q2 > 8 (GeV/c)2 in terms of interference between the valence and non

valence component of the proton state. It is worth noting that the behavior of the nucleon form
factors, in a wide kinematical region, enters in the evaluation of the static (Q2 → 0) em properties
of the deuteron, according to the approach of Refs. [9, 10]. In Table 1, the preliminary values,
for different deuteron wave functions, corresponding to three realistic NN interactions, are shown.
In particular, the CD-Bonn [21], RSC93 [24] and AV18 [22] interactions have been used. The
calculations corresponding to the one-body contribution with the Hermiticity term [9, 10] have been
also shown. It should be mentioned that, within the last approximation scheme, the experimental
quadrupole moment is fairly well described, with an underestimate of the order of 4%.

Interaction PD µNR
D µLFD

one µLFD
1+2

CD-Bonn 4.83 0.8523 0.8670 0.863±0.002
RSC93 5.70 0.8473 0.8637 0.861±0.002
Av18 5.76 0.8470 0.8635 0.860±0.002

Exp. 0.857406(1)

The results appear encouraging. But, for a vanishing momentum transfer (see the analogous dis-
cussion for the one-body case in Refs. [9, 10]), it is necessary an accurate study of the numerical
convergence of the multifold integrals, that enter the calculations. From the charge normalization,
one can obtain the probabilities of the valence and non valence components. At the present stage
we have obtainedProbNV ∼ 0.01.

5. Summary & Perspectives

In this contribution, we have presented preliminary results for the magnetic moment of the
deuteron, including two-body, dynamical contributions [12] to em current, within the LFHD ap-
proach proposed in Refs. [3, 9, 10]. The approach is fully Poincaré covariant.

The new two-body terms have been inspired by an exact analysis of a Yukawa model, in ladder
approximation, for two interacting fermions, carried out in Ref. [12]. It turns out that, onto the LF
hyperplane, one obtains a LF current fulfilling the Ward-Takahashi identity, at each order in the
Fock expansion.

The systematic analysis of the deuteron em form factors is started, and it represents a non
trivial task from the numerical point of view, given the many, multidimensional integrals to be
performed with very high accuracy, in particular at lowQ2. First results obtained by using i) the
deuteron wave functions corresponding to CD-Bonn, RSC93 and AV18 NN potentials and ii) the
interaction contribution to the two-body current, as depicted in the first line of Fig. 1, appear
consistent with the expectations, namely a very low probability for the component beyond the
valence one, and a magnetic moment in fair agreement with theexperimental values. Calculations
of the quadrupole moments, more delicate from the numericalpoint of view, are in progress.
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