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1. Introduction

A careful description of the deuteron, retaining only a @mtumber of baryonic and mesonic
degrees of freedom, could help to single out new, experiahaignatures, related to the underlying
degrees of freedom (see [1, 2] for recent reviews of the QQ&cef in the deuteron). In the
present contextareful descriptiormeans an approach that is able to fulfill general propetiies,
the extended Poincaré covariance (the discrete symmamgeisicluded), Hermiticity and current
conservation [3].

Deuteron electromagnetic (em) observables offer a vadyalaly ground for testing theoretical
ideas (see, e.g., [4]). In particular, the challenges feotists appear very stimulating in view of the
Th. Jefferson Lab. (TJLAB) upgrading to 12 GeV, that shoydérovery intriguing scenarios, as
described, e.g., in PAC-34 and PAC-35 Reports [5]. But, iteof issues to be coped with is long,
if one would like to address non standard effects, e.g. hiket-quark bag [1, 2, 4]. In our opinion
(see, also [4]), efforts should be invested on the analyfsig the consistency between dynamics
and operatorial structure of the current; ii) the strongifiptay between different ingredients, e.g.
between the dynamical content of the two-body currents bednticleon form factors; iii) the
two-photon exchange effects, that could affect the extradif the em form factors (though recent
estimates [6] assign them a minor role,1%); iv) further baryonic degrees of freedom, like isobar
configurations, till now investigated only within a non talestic approach [7].

Our aim is to include new dynamical two-body contribution®ithe em current, in a Light-
Front Hamiltonian Dynamics (LFHD) framework (see, e.g], fi@& a review of the Relativistic
Hamiltonian Dynamics), for describing the deuteron em oladdes, still satisfying the extended
Poincaré covariance. This work expands the investigatamed out in Refs. [9, 10], where a
current operator containing the one-body term and a twagrloodtribution, needed for satisfying
the Hermiticity, was considered. In the present approaehdd two-body terms with a dynamical
nature, generated by the presence of an explicit one-picimagrge (see also [11]). These two-body
currents are inspired by an exact analysis of the four-deoeal (4D) current corresponding to a
Yukawa model in ladder approximation, where two fermiornenact with a pseudoscalar, massive
boson [12] (notice that, within such an approximation, ¢hisrno photon-boson coupling. The
4D current corresponding to the field theoretical model mgmted onto the three-dimensional
(3D) LF hyperplane, so that one obtains an operator, that$) @ the 3D LF valence component
of the interacting-system state and ii) automatically fislfihe Ward-Takahashi Identity (WTI).
Moreover, in Ref. [12], it has been shown that one can prgpgenhcate, in the Fock space, the
LF current and still be able to satisfy the correspondingin¢ated WTI. In particular, the Fock
expansion is ordered in powers of the interaction. In ordémiprove the calculations of the em
deuteron observables of Refs. [9, 10], in this work we casrsibe first-order LF current operator,
obtained by applying the approach of Ref. [12] to an inténgdtagrangian? = —igpskl_JygfqJ )
whereW is the fermion field an@ an isovector pseudoscalar boson field.

In Sec. 2, the choice of the reference frame and some gdresaif our approach will be
presented. In Sec. 3, the current adopted in our LFHD appredtbe illustrated. In Sec. 4, the
preliminary results, with only a part of the two-body dynaaiicontributions, will be shown for
the deuteron magnetic moment. In Sec. 5 summary and peikgzesill be presented.
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2. Choosing the frame

Our theoretical frame is the LF Hamiltonian Dynamics corelimvith the Bakamjian-Thomas
construction [13] of the Poincaré generators for an intergesystem. Within such a framework,
as it is well known, a relativistic square mass operator af@lbody system can be immediately
identified with the Schrédinger equation for that systeni.[T4is allows one to formally embed
the standardon relativisticdeuteron wave function into a fully Poincaré covariant desion. The
only particular care is the treatment of the spin part, whieeeMelosh rotation operators [15] are
requested (see, e.g., [10] for details). Therefore, with@previous approach, one can rigorously
fulfill the Poincaré covariance, for an interacting systeitia finite number of degrees of freedom.
Heuristically, one could say that the Relativistic Hamiitm Dynamics with a Bakamjian-Thomas
construction allow one to implement a description of anraténg system that falls between the
non-relativistic quantum mechanics and local relatigifgld theories. This simple view is further
strengthened onto the LF hyperplane, since in this caserp ahd clean separation between the
center of mass motion and the intrinsic one can be straighdially achieved. Let us also notice
that the LF boosts are kinematical transformations andtigespectral conditioR™ = P°+P,>0
favors a description with a finite number of degrees of freedo

The other ingredient for developing our description of tine @euteron form factors is the
reference frame where we calculate the theoretical obsksalf one had the complete and cal-
culable theory at disposal, the choice of the frame shoutdrefresent an issue, given the full
covariance,. Actually one is dealing with an approximateesae, and therefore the choice of the
reference frame, where one can more easily implement thetreams for preserving the general
properties, becomes strategic. Following Ref. [3], onestanw that in a Breit frame where the mo-
mentum transfer is longitudinal, i.§, = 0, the symmetry of the physical process can be exploited
for reducing the constraints imposed on the current opelgtdhe extended Poincaré covariance
to a simple rotational covariance around e § -axis. Then, in this frame, any operatorial de-
pendence, fulfilling the rotational covariance aroundzheaxis is allowed in the construction of
a current operator, that, in particular, i) depends paraoadly upon the CM momenta and ii) acts
on the intrinsic variables. For instance, the matrix eleimenthe current operator can be approxi-
mated by the ones obtained from one-body Dirac and Paukwtgrand then, since the rotational
covariance is safe, it turns out that the extended Poincardriance can be fulfilled by using the
proper transformations (Lorentz boost, rotations, ti@imhs etc.). Moreover, in order to imple-
ment the Hermiticity, one has to add a term that contains yhamiical generator of the transverse
rotations, obtaining necessarily a two-body contributiorthe current. It should be pointed out
that such a contribution must be distinct from the ones tledrg going to discuss in what follows,
since the last ones contain dynamical effects in a more@xplay.

3. Projecting the em current onto the Light-Front hyperplane

In this Section, a brief illustration of the results of Rell2], in particular the ones directly
relevant for the present calculations, is given.

In Refs. [17, 18, 19, 12], by using the projection of the 4D sibgl quantities onto the 3D
LF hyperplane (i.ext = x%+x3 = 0), and the Quasi-Potential approach for the Transition Ma-
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trix [16], it has been established a formally exact, oneite- correspondence between i) the 4D
Bethe-Salpeter amplitude of an interacting system and EheRBvalencecomponent, ii) the ma-
trix elements of the 4D em current and of the LF current, bolfilling the proper Ward-Takahashi
identity. The previous two ingredients allow one to keepasafe thdrivial propagation in the
global time § 1y x" for a system wittN constituents), and to focus on the dependence upon the
relative-time propagation, governed by the internal dyicarof the system. In particular, within
this approach, the valence component is found to be the gagigtion of a 3D dynamical equation,
with an effective 3D interaction that is exactly relatedte 8D kernel of the BS equation. The ex-
act correspondence between 3D and 4D quantities is accimeglithrough operators that contain
the 4D interaction and cannot be determined in a simple whig difficulty can be overcome in a
workable way by developing a possible approximation schéaneonstructing solutions, based on
the Fock expansion of the relevant quantities. If one trtexcthe Fock space, one can use the cor-
responding truncated Fock basis, in order to expand qiemtitke the effective interaction and the
current operator, onto the LF hyperplane. Clearly, by usitigincated space only the kinematical
symmetries can be satisfied within a field theoretical aprdgiven the infinite number of degrees
of freedom), but if one restricts to a Relativistic Hamilieom Dynamics approach, where a finite
number of degrees of freedom is taken into account, then aneadopt the truncated operators
and recover the full Poincaré covariance. In particulathdf truncated current contains operators
that satisfy the covariance around thaxis, and furthermore one uses the valence wave functions,
eigensolution of the properly truncated mass equationheénetvaluation of the matrix elements,
then both the current conservation and the Poincaré conariean be implemented. It should be
stressed that the truncated mass operator has to propemniyete with the Poincaré generators, as
requested by the Bakamjian-Thomas construction.

In the actual calculations, there is another relevant i§suthe LF projection, that makes the
application of the procedure to the fermionic case shariffigrdnt from the bosonic one. The Dirac
propagator can be separated in an on-shell term and anterséamus (in LF time !) propagation,
viz

: __ ktm Kon+m Y
1S(k) = k2—mP+ie  kt(k~—kon+ i£) o 3-1)

wherek,, = (]k  [2-+m?)/k* is the minus-component &, such thakgn-kon = M? and the second
term is the instantaneous one, as shown by the Fourier dramsh k~ andk |, i.e.

/dk* dk | exd—i(k x*/2—ik, -x1)] = (22 3(x*)3(x, ) -

The instantaneous term has a great impact on the analysis ofdtrix elements of the current
operator, and it produces very peculiar operatorial atinestin the many-body contribution to the
LF current. It should be emphasized that this fact is rel&beour choice of the reference frame,
whereq"™ # 0, since in this case the extraction of the em form factorslis matrix elements of
both the plus and perp components of the current. In the fuitheg™ # 0 the Poincaré covariance
can be demonstrated within a LFHD approach [3], and thezdfw famougngular conditionssue
(see, e.g. [20]) does not any more plague the matrix elements

In Ref. [12], the explicit expressions for many-body ternishe em LF current have been
obtained, within a Yukawa model in ladder approximationtf@o fermions. In our approach for
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Figure 1: Diagrammatic analysis of the LF first-order em current, mted within a Yukawa model in ladder
approximation. In Ref. [12] one can find more details andiekm@xpressions.

evaluating the em deuteron observables, we take into attoeicurrent only up to the first-order
in the interaction (see the next Section), as shown by thgraliamatic representation of Fig. 1. It
is worth noting that one has at least three particles in flitjiie LF-time flows from right to left).

4. Preliminary resultsfor the deuteron magnetic moment
In a Breit frame where];, = 0 and thereforgjt # 0, the matrix elements of the em current
operator for an interacting system can be defined in termbeolLE current and the dynamical

transverse component of the Bakamjian-Thomas rotatioergémrS, as follows

i#(c8) = L) | by () s L H s @)
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whereL} [ry(— )] is the 4D representation of thierotation around th&-axis, and generates a term
necessary for implementing Hermiticity. In Eq. (4.1), theemtor_# #(q&,) is given by

JH(08) = iBnet itwo = Mo Zg' Mo+ Mo VDo 75" + 758V ] Mo (4.2)

wherelg is the so calledree reverse LF projectoof Ref. [12], that singles out the positive-
energy sector (modulo some kinematical factors)ApeE Gtree — Gglob, With Gyree the standard
two-fermion free propagator an@gyop an auxiliary Green’s function, that takes into account the
global-time propagation. The operaiiis the interaction, mediated by a pion (see also [11])

V5 ® y3 Z2[(P2— Pr)?]
[(p — P1)2 —mZ+ig]

—ig? (4.3)
with .Z[(p2 — P1)?] the 4D vertex form factor counterpart of the nonrelatiistertex function
of Ref. [21]. The quantities with hats represent proper ajpes. In Eq. (4.2), the one-body
contribution (see [9, 10] for details) is obtained from

1 i 1-13
A= 3 [hoEF ot (4.4)
where the free nucleon current is
U oM
=l -2 PP Lm0 - D+ FalE - P 45)

with Fyy andF,y the Dirac and Pauli form factors, respectively.
What about current conservation and charge normalizatiotife chosen Breit frame, current
conservation and charge normalization read respectiwetglibws

(Pr,dlj" (a&)

) = (Pr,dlj (a&)[d;R) (4.6)

and

(R,d[j7(0))|d;R) = Pl,dl 770+ 77 (0)][d;R) = e (4.7)

If WTI is fulfilled, then one obtains the current conservationce matrix elements are taken be-
tween eigensolutions of the mass equation constructedtfiemproper Green’ function. This is not
the case in our phenomenological calculations, since wadopting the deuteron wave functions
corresponding to realistic interaction, like CD-Bonn [21]AV18 [22]. But, in the elastic processes
like the one we are considering, current conservationd@lafter implementing Hermiticity [3],
given by (note the change of tleaxis)

(Pr,d|j* (d&,)|d;R) = (R, d|j*(—0&)
Notice that the charge normalization can be fulfilled if in E441) one defines
(R.d[_7~(0)|d;R) = (R,d| 7" (0)|d

This leads to assume that such an equality holds for any mmmetnansfer. It should be pointed
out that for evaluating the em observables ojlygé,) and j1(?) (gé,) are relevant.

) (4.8)

R) (4.9)
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Preliminary results for the magnetic moment of the deutérare been obtained by retaining
only the two-body interaction terms, corresponding to tlayhms depicted in the first line of
Fig. 1, and with the explicit expressions given in Ref. [12jodulo the isospin dependence and
the pseudoscalar coupling). The nucleon form factors a&dbpt the calculations are the ones
of Ref. [23], that are in nice agreement with the most receeasurements of the proton form
factors (see, e.g., [25]) and represent a first microscbpitarpretation of the possible zero in
the ratio upGE /G}y for Q% > 8 (GeV/c)? in terms of interference between the valence and non
valence component of the proton state. It is worth noting the behavior of the nucleon form
factors, in a wide kinematical region, enters in the evatmaof the static Q> — 0) em properties
of the deuteron, according to the approach of Refs. [9, 10]Tdble 1, the preliminary values,
for different deuteron wave functions, corresponding tedfrealistic NN interactions, are shown.
In particular, the CD-Bonn [21], RSC93 [24] and AV18 [22]en&ctions have been used. The
calculations corresponding to the one-body contributigh the Hermiticity term [9, 10] have been
also shown. It should be mentioned that, within the last @xdpration scheme, the experimental
guadrupole moment is fairly well described, with an undiémeste of the order of 4%.

Interaction| Py | pNR | uitD pit?
CD-Bonn | 4.83| 0.8523| 0.8670| 0.863+0.002
RSC93 | 5.70| 0.8473| 0.8637| 0.861+0.002
Av18 5.76 | 0.8470| 0.8635| 0.860+0.002
Exp. 0.857406(1)

The results appear encouraging. But, for a vanishing mameiransfer (see the analogous dis-
cussion for the one-body case in Refs. [9, 10]), it is necgsma accurate study of the numerical
convergence of the multifold integrals, that enter theuwakons. From the charge normalization,
one can obtain the probabilities of the valence and non galeomponents. At the present stage
we have obtaineérobyy ~ 0.01.

5. Summary & Perspectives

In this contribution, we have presented preliminary restdr the magnetic moment of the
deuteron, including two-body, dynamical contributiong][10 em current, within the LFHD ap-
proach proposed in Refs. [3, 9, 10]. The approach is fullyn®anié covariant.

The new two-body terms have been inspired by an exact aralfai Yukawa model, in ladder
approximation, for two interacting fermions, carried auRef. [12]. It turns out that, onto the LF
hyperplane, one obtains a LF current fulfilling the Ward-dlaéshi identity, at each order in the
Fock expansion.

The systematic analysis of the deuteron em form factorsaitest, and it represents a non
trivial task from the numerical point of view, given the mamgultidimensional integrals to be
performed with very high accuracy, in particular at I6%. First results obtained by using i) the
deuteron wave functions corresponding to CD-Bonn, RSC@3/A18 NN potentials and ii) the
interaction contribution to the two-body current, as deuicin the first line of Fig. 1, appear
consistent with the expectations, namely a very low prditaldor the component beyond the
valence one, and a magnetic moment in fair agreement witexperimental values. Calculations
of the quadrupole moments, more delicate from the numepiialt of view, are in progress.
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