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We investigate the possibility of formulating Poincaréariant quantum models of few-body
systems where the dynamical input is given by a set of Ewatidevariant Green functions. This
is an alternative to the direct construction of Poincaré dlggebras on few-body Hilbert spaces.
In the proposed framework all calculations are performadgusme Euclidean variables, with no
analytic continuation.

One potential advantage of the Euclidean approach is thzsta more direct relation to
Lagrangian based field theory models. One of the challersghe iconstruction of a robust class of
suitable model Green functions. In this paper do not addresproblem; we assume that this has
already been solved and discuss how one can calculate ablswvithout analytic continuation.

Most of what we propose in not new, it is motivated the reaqorasion theorem of a quantum
theory in Euclidean field theory. The fundamental work wasedby Osterwalder and Schrader
[1][2]- The approach illustrated in this work is strongly tivated by Frohlich’s [3] elegant solution
of the reconstruction problem using generating functien@lne of the interesting observations of
Osterwalder and Schrader is that locality is not needednstoact the quantum theory.

To keep our discussion as simple as possible we assume thatewgiven a Euclidean in-
variant generating functional for a scalar field theory. sTihput replaces the model Hamiltonain.
We assume that this generating functional is Euclidearriswg positive, reflection positive, and
satisfies space-like cluster properties. These requirenaea defined below. The conditions on the
generating functional imply conditions on Green functiomsnodels based on subsets of Green
functions.

For a scalar field the Euclidean generating functiafid] is the functional Fourier transform
of the Euclidean path measure:

De[@]eAlwl+ie(f) i)n
Z[f] ::f jl[;pir(p]eA[‘P] :Z(In—)IS](f’J:) (1)
n times

wheref (x) = f(1,x) is a test function in four Euclidean space-time variables&ix1, - - - ,xn) iS
then-point Euclidean Green function.

The generating functional is Euclidean invarianZiff] = Z[f’] wheref’(x) = f(E~(x —a))
wherex — Ex+ a is a four-dimensional Euclidean transformation of the argnts off.

The generating functional is positive if for every finite seqce of real test functiorisf; } the
matricesE;j = Z[f; — f;] are non-negative.

The generating functional is reflection positive if for gveequencd f; }, of real test functions
with support for positive Euclidean timéhe matricedVlj; = Z[f; — ©fj] are non-negative, where
(©f)(1,x) = f(—1,X) is Euclidean time reflection.

The generating functional satisfies space-like clustgpgnt@s if

lim (Z[f +ga] - Z[f]Z[g]) — 0 )

|a|—00

where
Ga(T,X) = g(T,x—a). (3)

These are the primary requirements that are expected ofcaptable generating functional.
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1. Hilbert Space

We begin by representing vectors by wave functionals of dnen f
No X Ne i
Bl¢] = z b;e*(fi) Clo| = Z @9 (1.1)
j=1 k=1

whereb; andcy, are complex constants arfglx) andgy(x) are real Euclidean test functions. The
argument ¢" plays the role of a formal integration variable.
We define a Euclidean-invariant scalar product of two-wavefionals by
No N

(B,C) Zlkz b*CkZ gk — fjl. 1.2)
This becomes a Hilbert space inner product by identifyingtaes whose difference has zero norm
and adding convergent sequences of finite sums. We callgheghe Euclidean Hilbert space.
Reflection positivity can be used to define a second Hilbeatsp Vectors are represented
by wave functionals of the form (1.1) where the test fundidj(x), gk(x) are restricted to have
support for positive Euclidean times. We call these testtions positive-time test functions. We
define the physical scalar product of two such wave functbg

No Ne
<B|C Zlkz b*CkZ gk— Of; ] (1.3)
ST=
As in the Euclidean case, this becomes a Hilbert space imodupt by identifying vectors whose
difference has zero norm and adding convergent sequendastefsums. We will refer to the
resulting Hilbert space as the physical Hilbert space. R&die positivity is equivalent to the
requirement that
(B|B) > 0. (1.4)

2. Poincaré Lie Algebra

Note that the determinant of the<x2 matrices

X:<t—.z x—iy) X:<ir—.z.x—iy> 2.1)
X+iy t+z X+iy it+z
gives the Lorentz and Euclidean invariant distances. Thergiénants are preserved under the
linear transformation¥ — X’ = AXB andX — X’ = AXB! whereA andB are complex matrices
with determinant 1. These transformations are generaligptex but the determinants remain
real. It follows that the paifA,B) equivalently defines both complex Lorentz and comilg%)
transformations. Real Lorentz transformations hBwe A* while realO(4) transformations have
A and Be SU(2). In this section we use the observation that @) transformations correspond
to complex Lorentz transformations to extract Poincaréegaors on the physical Hilbert space.
Finite Euclidean transformation$,E,a), act on wave functionals as follows

N
T(E,a)B[¢] = Zb b feai), (2.2)
=1
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wherefe , j(x) = fj(E"1(x—a)) andE € O(4). Since real Euclidean transformations preserve the
Euclidean scalar produ¢t,-), T(E,a) is unitary on the Euclidean Hilbert space.

These same transformations, with restrictions on the dosreid group parameters to ensure
the positive time support condition is preserved, are ddforethe physical Hilbert space, but the
resulting transformations are not unitary.

For three-dimensional Euclidean transformatioh&:,a) maps the physical Hilbert space to
the physical Hilbert space in a manner that preserves thagai\Hilbert space scalar product. This
implies that for space translations and ordinary rotatib(is, a) is unitary on the physical Hilbert
space.

Positive Euclidean time translatiors(l, (3,0)), 8 > 0, map the physical Hilbert space to the
physical Hilbert space, however because of the Euclideaa teversal operator in the physical
scalar product, Euclidean time translations are Hermitiather than unitary. It is possible to use
the unitarity of® on the Euclidean Hilbert space along with reflection paisiti¢] to show that
positive Euclidean time evolution is a contractive Hermetsemigroup on the physical Hilbert
space.

Rotations in planes that contain the Euclidean time dioactio not generally preserve the
positive Euclidean time support constraint. However, € thst functions are restricted to have
support in a cone with axis of symmetry along the Euclideare @xis that makes an angle less than
11/2 with the time axis, then rotations in space-time planesutiin anglep small enough to leave
the cone in the positive-time half plane are defined on trefricted set of wave functionals. On
this domain and for this restricted set of angles Euclidgata-time rotations are Hermitian. They
form a local symmetric semigroup. What is relevant is that jike one-parameter unitary groups
and contractive Hermitian semigroups, local symmetricigemaps have self-adjoint generators
[5] [6][7]-

The result is that on the physical Hilbert space the varioesmarameter subgroups of the real
Euclidean transformations have the form

T(E,a) — 2P g0 g BH PK (2.3)

whereH,P,J,K are all self-adjoint operators on the physical Hilbert gpdt can also be shown
by direct calculation that the infinitesimal generatorsséathe Poincaré commutation relations.
This is a consequence of the relation between the compleantoand comple©O(4) groups.

Matrix elements of the generators can be computed by diffexting T (E, a) with respect to
the group parameters:

Np  Nc
<B|J|C (99 Z Z b*CkZ (9)70’j]‘9:o (2.4)
No Ne
(BIPIC) = d Z Z b*CkZ Of|7a7j]|a:0 (2.5)
d No Ne
<B‘H‘C> = Z Z b*CkZ gk—eﬁ (8,0),] ]|B 0 (26)
j 1k=1
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0 No Ne

(BIKIC) = % ZlkzleCkZ[gk— Ofep).0.ilI5 (2.7)
j=1k=

wherep is the axis and angle of a rotation in a plane containing thdif®an time direction (it is
an imaginary rapidity).

In this section we have illustrated how the Poincaré geassatan be constructed directly
from the Euclidean generating functional without using anglytic continuation.

3. Particles

Particles are associated with eigenstates of the mass iCagierator of the Poincaré group
with eigenvalues in the point spectrum. Matrix elementhefgquare of the mass operator are

, 92 02 No N
(BIM?[C) = (5—32 - @> lekzlbj &Z[G—Ofi (.a).illaso (3.1)

Since the positive-time wave functionals are dense in thysiphl Hilbert space it is possible
to construct an orthonormal basis of wave functiod@g|¢|} satisfying

Bn[¢]  (Bn[Bm) = Omn. (3.2)
Point eigenstates of the mass operator are normalizahlésw of the eigenvalue problem
((M?>—2%)B, ) [¢] =O. (3.3)

In the orthonormal basi&B,[¢]} this eigenvalue equation becomes

Balg] = Z bnBn[¢] Z<Bm’M2’Bn>bn = A%bn (3.4)
n n
where the sum is generally infinite.
States of sharp linear momentum and canonical spin can bected using translations and
rotations. Specifically mass-momentum eigenstates aes dgiy

dPa N .
OB P) = [ Gaz® ™ 3, 3 breiZlf0an =00l (35
which can be normalized so
(BA(p")IBA(p)) = (' —p)- (3.6)

Similarly, itis possible find simultaneous eigenstates a$s) linear momentum and spin using

i .
ClByj oot = [ 3 dRCIT(R )8, (R *p)Dfu (R 37)
v==]j
wheredRis theSU(2) Haar measure.
The wave functionaB, j(p, u)[@] describes a particle of mags linear momentunp, spin j
and z-component of canonical sgin
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We remark that if this state is non-degenerate, then it masstorm irreducibly with respect
to the Poincaré group. This means that

j . .
<C|U (Ava)|B/\](p>u)> = Z /dp/<C|B/\.j(plvul»‘@é\'fl’;p.u[/\?a] (38)
W==]j

where _
Do N8 = (A, ). W UIA (A, ]). P, ) (3.9)
is the known Wigner fucntion of the Poincaré group in the g4, j),p, u).
As emphasized in the previous sections, all of the calanatiwere done using Euclidean

Green functions and test functions, with no analytic cardtion. Equation (3.8) demonstrates
how to perform finite Poincaré transformation on the oneytsmlutions.

4. Scattering

The conventional treatment of scattering problems in qurarfteld theory is formulated using
the LSZ asymptotic conditions. These have the advantagehéw can be implemented without
solving the one-body problem, which is non-trivial in fielkbries. However, given one-body so-
lutions it is also possible to formulate scattering asyriptoonditions using strong limits. These
asymptotic conditions were given by Hagg and Ruelle [8J##id they are the most natural gener-
alization of the formulation of scattering that is used im#relativistic quantum mechanics.

In this work it is useful to use a two Hilbert space formulatid0] of Haag-Ruelle scattering
theory[11][12], where an asymptotic Hilbert space is idtroed the formulate the asymptotic con-
ditions on the scattering states. All particles appearesehtary particles in the asymptotic space;
the internal structure (bound-state wave functions) apjethe mapping to the physical Hilbert
space.

For a scalar field theory with a mass eigenstate with eigaeve] Haag and Ruelle multiply
the Fourier transform of the field by a smooth functjgn(p?) that is 1 wherp? = —A2 and van-
ishes when-p? is in rest of the mass spectrum of the system. The progy¢p) := @(p)pa (p?),
is Fourier transformed back to configuration space. Theltiegifield, ¢, (x), has the property
that it creates a one-body state of maseut of the vacuum. It transforms covariantly, but is no
longer local. While this is not a free field, it asymptotigaiboks like a free field, and it is useful
to extract the linear combination g (x) and¢p(x) that asymptotically becomes the creation part
of the field:

A(f,t) == —i/(pp(x) do F(x)dx (4.1)

where f(x) is a positive-energy solution of the Klein Gordon equatiothwnassA. Haag and
Ruelle prove that the scattering states of the theory aendiy the limits:

Jim [[Wa(Fr - ) = A ) --- A(f1,1)[0)]| = 0. (4.2)
To express this in a two Hilbert space notation we rewAité,t) as

A(f,1)]0) =™ / (IH, @(p)] — on ()@ (p)) &M |0)dpe™"» P f(p)dp. (4.3)

A(p)
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It follows that

AT 1)+ A(12.)[0) = @™ [ A(pr) -~ A(p1)|0)dpn---dpse ™ fo(pn) - fi(pr) (4.4
. H—H

where
Ho = ZwA(pi). (4.5)
]

In this notation equation (4.2) has the form
Wiy, fn)) = lim €t we Mol f) = Q. f). (4.6)

This can be expressed in the Euclidean generating funttiepeesentation by replacin@( P)px (P?)
by theB, j(p, 1) which also creates a one-body state of massit of the vacuum. The operator
® becomes

®(pn, k- P1, H1)[@] = ([ ([HBay.ju (P, H)] — &, (PK)Ba i (P ki) ) [0 (4.7)

where the wave functionals are treated as multiplicatiomramrs and

|§0 (fi.(8,0)n)
- 35 Z B (4.8)

€
Two Hilbert space wave operators are defined by
(W (f,-- fa)) = lim M e Mot f) = Q). (4.9)
The wave operators satisfy
UA,aQr = Q.U [A, 8] where  U¢[A,a] = ®U,, ;[\, a]. (4.10)

Since the asymptotic particles transform like free pagtiakith physical masses, this formula can
used to compute finite Poincaré transforms of scatterirtgsta

5. Computational considerations

One of the difficulties with using the generating functiomepresentation to do scattering
calculations is that we have no simple means to conséfiton the physical Hilbert space. This
can be overcome using a trick. In non-relativistic scatgpriheory Kato and Birman [11][12]
showed that if

Jim_ et oe o ) = |y) (5.1)

then for admissible functiong

lim eX(Mtpe=X(Holt ) — |y, ). (5.2)

t—+oo

A useful choice of an admissible is x(x) = —e P* for B > 0. If this result is used in (5.2) then
we have the alternative representation of the scatteratg st

e) = lim e o). (5.3)
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The advantage of this representation is that becluse, the spectrum ofe #) is in the interval
[0,1]. For large fixedh, g™ can be uniformly approximated by a polynomialén®™. The
advantage is that powers efH can be computed directly using the generating functional

No Ne

(CleP™B) =5 S bjoZ[g mp.ok — ©f] (5.4)
j=1k=1

without using analytic continuation.
This suggest the following sequence of approximations topge scattering amplitudes. First

use narrow wave packets sharply peaked in linear momentuspgmximate sharp momentum
transition matrix elements in terms 8imatrix elements in normalizable states:

(WIS W) — Ban(W|Ws)

27 (W, [5(E. _E_)|Wr)’ (5:5)

<pél_7 uiv T >p:17 l-'lr/1|T |p17 H1,P2, l-'l2> ~

Next approximatgW;|S/W¢) = (W}, |Wr_) using (5.3) for large enough This step also involves
solving the one-body problem for each asymptotic particlne initial and final states:

~BHg¢

(Wi |Wio) ~ (Wele ™ ofee M pee ™ gy, (5.6)
Next, after fixing n approximateg?™ onx < [0,1] by a polynomial irx, which gives

e ™ & Y cm(n) (e P, (5.7)

Taken together these approximations, when performed ircdnect order, provide a means to
compute on-shell transition matrix elements using purelglidean methods.

6. Test of approximations

A mathematically controlled approximation is not autoralty useful in all applications. To
test the suggested sequence of approximations at the mel®&/ scale we consider a simple
model based on a separable potential

H- S ord kg =
= 192l 9= e

This is an exactly solvable model; a first test of the propasethod is to calculate scattering
amplitudes in this model using matrix elementsof in normalizable states.
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Figure 1: Real part of S compared to Kato
Birman approximation as function of
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Figure 3: Calculated compared to approx-
imate calculations for the real part of transi-
tion matrix element for different energies.

Imaginary S vs n-limit - 1 GeV
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Figure 2: Imaginary part of S compared to
Kato Birman approximation as function of
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Figure 4. Calculated compared to approx-
imate calculations for the real part of transi-
tion matrix element for different energies.

Table 1: Degree 300 polynomial compared te "%, n = 220

X Acognx)

Asin(nx)

0  4.44089x 1016
0.1 235367x 1014
0.2 555112x 1016
0.3 384137x10 1
0.4 172085x 1014
0.5 277556x 10°1°
0.6 666134x 1016
0.7 854872x10°1°
0.8 102141x 1014
0.9 122125x10°1°
1  488498x 10°1°

8.32667x 10 1°
1.46966x 10 14
3.6797 x 1014
1.80689x 1014
1.32672x 1014
2.93793x 1014
3.33344x 1014
2.50355% 10~ 14
1.35447x 10714
2.72282x 10714
6.61415x 1014

In this model shar@ matrix elements can be calculated with an error of approteinea %
using wave packets whose momentum widths are about 1/10eafrthmomentum. Figures 1
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and 2 show the convergence of the real and imaginary parte&rhatrix evaluated in these wave
packets as a function afin equation (5.6). Values afbetween 200-300 are adequate in this model.
B is a parameter that can be adjusted to improve the convergétalynomial approximations to
e ™ are performed using Chebyshev expansions:

2k—1m

gn(cos(§ g 21 1)) ) co
eodigTT 5

_ N
™~ 2T+ 3 6Tk €= ) (6
k=1

2 N+1Z

Polynomials of degree approximately 300 agree it uniformly to better than 13 significant
figures.

Typical results are shown in table 1. Figures 3 and 4 comparexact value of the real and
imaginary parts of the sharp momentum transition matridheodalculated values for momenta up
to 2 GeV. For most values &fthe exact and approximate values cannot be distinguished.

These results suggest that it may be feasible to use thisoohédhformulate relativistic few-
body models. The open problems that have not been addressieid preliminary work involve
finding model Green functions or generating functionalésang the required conditions. Re-
flection positivity appears to be a fairly restrictive cdiah that requires additional study. The
toy model discussed above did not require solutions of tleelmuy problem. How approximate
solutions of the one-body problem are affected by the othpraximations also requires further

study.
This work supported in part by the U.S. Department of Enetmger contract DE-FGO02-
86ER40286.
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