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1. Introduction

The measurement of Generalized Parton Distributions (GPDs) [1], parametrizing the non-
perturbative hadron structure in hard exclusive processes, represents one of the challenges of nowa-
days hadronic Physics. GPDs enter the long-distance dominated part of exclusive lepton Deep In-
elastic Scattering (DIS) off hadrons. Deeply Virtual Compton Scattering (DVCS), i.e. the process
eH −→ e′H ′γ whenQ2 ≫ m2

H , is one of the the most promising to access GPDs (here and in the
following, Q2 is the momentum transfer between the leptonse ande′, and∆2 the one between the
hadronsH andH ′) [1]. Relevant experimental efforts to measure GPDs are taking place, and a few
DVCS data have been already published [2]. The issue of measuring GPDs for nuclei has been
addressed in several papers [3]. While some studies have shown that the measurement of nuclear
GPDs can unveil information on possible medium modifications of nucleons in nuclei [4], great
attention has to be paid to avoid to mistake them with conventional nuclear effects. To this respect,
a special role would be played by few body nuclear targets, for which realistic studies are possible
and exotic effects, such as the ones of non-nucleonic degrees of freedom, not included in a real-
istic wave function, can be disentangled. To this aim, in Ref. [5], a realistic IA calculation of the
quark unpolarized GPDH3

q of 3He has been presented. The study of GPDs for3He is interesting
for many aspects. In fact,3He is a well known nucleus, and it is extensively used as an effective
neutron target: the properties of the free neutron are beinginvestigated through experiments with
nuclei, whose data are analyzed taking nuclear effects properly into account. For example, it has
been shown, firstly in [6], that unpolarized DIS off trinucleons (3H and3He) can provide relevant
information on PDFs at largexB j, while it is known since a long time that its particular spin struc-
ture suggests the use of3He as an effective polarized neutron target [7]. Polarized3He will be
therefore the first candidate for experiments aimed at the study of spin-dependent GPDs of the free
neutron. In Ref. [5], the GPDH3

q of 3He has been evaluated using a realistic non-diagonal spectral
function, so that momentum and binding effects are rigorously estimated. The scheme proposed
in that paper is valid for∆2 ≪ Q2,M2 and it permits to calculate GPDs in the kinematical range
relevant to the coherent, no break-up channel of deep exclusive processes off3He. In fact, the latter
channel can be hardly studied at large∆2, due to the vanishing cross section. Nuclear effects are
found to be larger than in the forward case and to increase with ∆2 at fixed skewedness, and with the
skewedness at fixed∆2. In particular the latter∆2 dependence does not simply factorize, in agree-
ment with previous findings for the deuteron target and at variance with prescriptions proposed for
finite nuclei.

Here, the analysis of Ref. [8], which extended that of Ref. [5] into various directions, is re-
viewed. The main point of the contribution will be to stress that the properties of nuclear GPDs
should not be trivially inferred from those of nuclear parton distributions.

2. Conventional nuclear effects on the GPDs of 3He

Let us introduce the definition GPDs to be used in what follows. For a spin 1/2 hadron target,
with initial (final) momentum and helicityP(P′) ands(s′), respectively, the GPDsHq(x,ξ ,∆2) and
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Eq(x,ξ ,∆2) are defined through the light cone correlator

Fq
s′s(x,ξ ,∆2) =

1
2

∫

dλ
2π

eiλx〈P′s′| ψ̄q

(

−λn
2

)

/nψq

(

λn
2

)

|Ps〉 = (2.1)

= Hq(x,ξ ,∆2)
1
2

Ū(P′,s′)/nU(P,s)+ Eq(x,ξ ,∆2)
1
2

Ū(P′,s′)
iσ µνnµ∆ν

2M
U(P,s) ,

where∆ = P′ −P is the 4-momentum transfer to the hadron,ψq is the quark field and M is the
hadron mass. It is convenient to work in a system of coordinates where the photon 4-momentum,
qµ = (q0,~q), andP̄ = (P+ P′)/2 are collinear alongz. The skewedness variable,ξ , is defined as

ξ = −n ·∆
2

= − ∆+

2P̄+
=

xB j

2− xB j
+O

(

∆2

Q2

)

, (2.2)

wheren is a light-like 4-vector satisfying the conditionn · P̄ = 1. (Here and in the following,
a± = (a0 ± a3)/

√
2). In addition to the variablesx,ξ and ∆2, GPDs depend on the momentum

scaleQ2. Such a dependence, not discussed here, will be omitted. Theconstraints ofHq(x,ξ ,∆2)

are: i) the “forward” limit,P′ = P, i.e.,∆2 = ξ = 0, yielding the usual PDFs

Hq(x,0,0) = q(x) ; (2.3)

ii) the integration overx, yielding the contribution of the quark of flavourq to the Dirac form factor
(f.f.) of the target:

∫

dxHq(x,ξ ,∆2) = Fq
1 (∆2) ; (2.4)

iii) the polynomiality property, involving higher momentsof GPDs. In Ref. [9], an expression for
Hq(x,ξ ,∆2) of a given hadron target, for small values ofξ 2, has been obtained from the definition
Eq. (2.1). The approach has been later applied in Ref. [5] to obtain the GPDH3

q of 3He in IA, as a
convolution between the non-diagonal spectral function ofthe internal nucleons, and the GPDHN

q

of the nucleons themselves. Let me recall the main formalismof Ref. [5], which will be used in
this paper. In the class of frames discussed above, and in addition to the kinematical variablesx
andξ , already defined, one needs the corresponding ones for the nucleons in the target nuclei,x′

andξ ′. The latter quantities can be obtained defining the “+” components of the momentumk and
k +∆ of the struck parton before and after the interaction, with respect toP̄+ and p̄+ = 1

2(p+ p′)+

(see [5] for details). In Ref. [5], a convolution formula forH3
q has been derived in IA, using the

standard procedure developed in studies of DIS off nuclei [11–13]. It reads:

H3
q (x,ξ ,∆2) ≃ ∑

N

∫

dE
∫

d~p [P3
N(~p,~p+~∆,E)+O(~p2/M2,~∆2/M2)]

× ξ ′

ξ
HN

q (x′,ξ ′,∆2)+O
(

ξ 2) . (2.5)

In the above equation,P3
N(~p,~p +~∆,E) is the one-body non-diagonal spectral function for the nu-

cleonN, with initial and final momenta~p and~p+~∆, respectively, in3He:

P3
N(~p,~p +~∆,E) =

1
(2π)3

1
2∑

M
∑
R,s

〈~P′M|(~P−~p)SR,(~p +~∆)s〉〈(~P−~p)SR,~ps|~PM〉×

× δ (E −Emin −E∗
R) , (2.6)
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and the quantityHN
q (x′,ξ ′,∆2) is the GPD of the bound nucleon N up to terms of orderO(ξ 2). The

delta function in Eq (2.6) definesE, the removal energy, in terms ofEmin = |E3He| − |E2H | = 5.5
MeV andE∗

R, the excitation energy of the two-body recoiling system. The main quantity appearing
in the definition Eq. (2.6) is the overlap integral

〈~PM|~PRSR,~ps〉 =
∫

d~yei~p·~y〈χ s,ΨSR
R

(~x)|ΨM
3 (~x,~y)〉 , (2.7)

between the eigenfunctionΨM
3 of the ground state of3He, with eigenvalueE3He and third compo-

nent of the total angular momentumM, and the eigenfunctionΨSR
R

, with eigenvalueE = Emin +E∗
R

of the stateR of the intrinsic Hamiltonian pertaining to the system of twointeracting nucleons. As
discussed in Ref. [5], the accuracy of the calculations which will be presented, since a NR spectral
function will be used to evaluate Eq. (2.5), is of orderO

(

~p2/M2,~∆2/M2
)

, or, which is the same,

~p2,~∆2 << M2. The interest of the present calculation is indeed to investigate nuclear effects at
low values of~∆2, for which measurements in the coherent channel may be performed. The main
emphasis of the present approach, as already said, is not on the absolute values of the results, but
in the nuclear effects, which can be estimated by taking any reasonable form for the internal GPD.
Eq. (2.5) can be written in the form

H3
q (x,ξ ,∆2) = ∑

N

∫ 1

x

dz
z

h3
N(z,ξ ,∆2)HN

q

(

x
z
,
ξ
z
,∆2

)

, (2.8)

where the off-diagonal light cone momentum distribution

h3
N(z,ξ ,∆2) =

∫

dE
∫

d~pP3
N(~p,~p +~∆)δ

(

z+ ξ − p+

P̄+

)

(2.9)

has been introduced. As it is shown in Ref. [5], Eqs. (2.8) and(2.9) or, which is the same, Eq. (2.5),
fulfill the constrainti)− iii) previously listed. The constrainti), i.e. the forward limit of GPDs, is
verified by taking the forward limit (∆2 → 0,ξ → 0) of Eq. (2.8), yielding the parton distribution
q3(x) in IA: [11,12,17]:

q3(x) = H3
q (x,0,0) = ∑

N

∫ 1

x

dz
z

f 3
N(z)qN

(

x
z

)

. (2.10)

In the latter equation,

f 3
N(z) = h3

N(z,0,0) =

∫

dE
∫

d~pP3
N(~p,E)δ

(

z− p+

P̄+

)

(2.11)

is the forward limit of Eq. (2.9), i.e. the light cone momentum distribution of the nucleonN in
the nucleus,qN(x) = HN

q (x,0,0) is the distribution of the quark of flavourq in the nucleonN and
P3

N(~p,E), the ∆2 −→ 0 limit of Eq. (2.8), is the one body spectral function. The constraint ii),
i.e. thex−integral of the GPDHq, is also fulfilled. Byx−integrating Eq. (2.8), one obtains the
contribution, of the quark of flavourq, to the nuclear f.f. Eventually the polynomiality, condition
iii), is formally fulfilled by Eq. (2.5).

In the following, H3
q (x,ξ ,∆2), Eq. (2.5), will be evaluated in the nuclear Breit Frame. The

non-diagonal spectral function Eq. (2.6), appearing in Eq.(2.5), will be calculated by means of the
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overlap Eq. (2.7), which exactly includes the final state interactions in the two nucleon recoiling
system The realistic wave functionsΨM

3 andΨSR
R

in Eq. (2.7) have been evaluated using the AV18
interaction [15]. In particularΨM

3 has been developed along the lines of Ref. [16]. The same
overlaps, evaluated along the line of Ref. [14], have been already used in Ref. [5,17].

The other ingredient in Eq. (2.5), i.e. the nucleon GPDHN
q , has been modelled in agreement

with the Double Distribution representation [10], as described in [18] (See Ref. [5]). In Ref. [5] it
has been shown that the described formalism reproduces well, in the proper limits, the IA results
for nuclear parton distributions and form factor. In particular, in the latter case, the IA calculation
reproduces well the data up to a momentum transfer−∆2 = 0.25 GeV2, which is enough for the
aim of this calculation. In fact, the region of higher momentum transfer is not considered here,
being phenomenologically not relevant for the calculationof GPDs entering coherent processes.

Conventional nuclear effects on the GPDs of3He will be now discussed. The aim is that of
avoiding to mistake them for exotic ones in possible measurements of nuclear GPDs, and to stress
the relevance of experiments using3He targets. As already done in Ref. [5], the full result forH3

q ,
Eq. (2.5), will be compared with a prescription based on the assumptions that nuclear effects are
neglected and the global∆2 dependence is described by the f.f. of3He:

H3,(0)
q (x,ξ ,∆2) = 2H3,p

q (x,ξ ,∆2)+ H3,n
q (x,ξ ,∆2) , (2.12)

where the quantity

H3,N
q (x,ξ ,∆2) = H̃N

q (x,ξ )F3
q (∆2) (2.13)

represents effectively the flavorq GPD of the bound nucleonN = n, p in 3He. Its x andξ depen-
dences, given bỹHN

q (x,ξ ), are the same of the GPD of the free nucleonN, while its∆2 dependence
is governed by the contribution of the flavorq to the3He f.f., F3

q (∆2). The effect of nucleon motion
and binding can be shown through the ratio

Rq(x,ξ ,∆2) =
H3

q (x,ξ ,∆2)

H3,(0)
q (x,ξ ,∆2)

, (2.14)

i.e. the ratio of the full result, Eq. (2.5), to the approximation Eq. (2.12). The ratio Eq. (2.14)
shows nuclear effects in a very natural way. As a matter of facts, its forward limit yields an EMC-
like ratio for the parton distributionq and, if 3He were made of free nucleon at rest, it would be
one. In Figs. 1 to 3, results will presented concerning: A) flavor dependence of nuclear effects; B)
binding effects; C) dependence on the nucleon-nucleon potential.
A) Flavor dependence of nuclear effects. In the upper left panel of Fig. 1, the ratio Eq. (2.14) is
shown for theu andd flavor, in the forward limit, as a function ofx3 = 3x. The trend is clearly
EMC-like. It is seen that nuclear effects for thed flavour are very slightly bigger than those for
the u flavour. The reason is understood thinking that, in the forward limit, the nuclear effects are
governed by the light cone momentum distribution, Eq. (2.11): no effects would be found if such
a function were a delta function, while effects get bigger and bigger if its width increases. In an-
other panel of the same figure, the light cone momentum distribution, Eq. (2.11), for the proton
(neutron) in3He is represented by the dashed (full) line. The neutron distribution is slightly wider
than the proton one, meaning that the average momentum of theneutron in3He is a little larger
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Figure 1: Left: upper panel: the dashed (full) line represents the ratio Eq. (2.14), for theu (d) flavor, in
the forward limit; lower panel: the dashed (full) line represents the light cone momentum distribution, Eq.
(2.11), for the proton (neutron) in3He. Right: the same as in the left panel, but at∆2 = −0.25 GeV2 and
ξ3 = 0.2.

than the one of the proton. Since the forwardd distribution is more sensitive than theu one to
the neutron light cone momentum distribution, nuclear effects for d are slightly larger than foru,
as seen in the upper panel of the same figure. In the same figure,the same analysis of Fig. 1 is
performed, but at∆2 = −0.25 GeV2 andξ3 = 3ξ = 0.2. In this case, nuclear effects are governed
by the non-diagonal light cone momentum distribution, Eq. (2.9), shown in the lower panel of the
figure. In this case, the difference between the neutron and proton distributions is quite bigger than
in the forward case, governing the difference in the ratio Eq. (2.14) for the two flavors, which is
of the order of 10 %, as it is seen in Fig. 3. From Figs. 1-3 threemain conclusions can be drawn.
1) if one infers properties of nuclear GPDs thinking to thoseof nuclear PDs, conventional nuclear
effects as big as 10 % can be easily lost, or mistaken for exotic ones. 2) Secondly, this behavior
is a typical conventional effect, being a prediction of IA inDIS off nuclei. If a 10 % effect would
be observable in experimental studies of nuclear GPDs, the presence of such a flavor dependence,
or its absence, would be clear signatures of the reaction mechanism of DIS off nuclei. Its presence
would mean that the reaction involves essentially partons inside nucleons, whose dynamics is gov-
erned by a realistic potential in a conventional scenario; on the contrary, its absence would mean
that, in a different, exotic scenario, other degrees of freedom have to be advocated. 3) Eventually,
it is clear that, for this kind of studies,3He is a unique target, for which experiments are worth to
be done: the flavor dependence cannot be investigated with isoscalar targets, such as2H or 4He,
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Figure 2: The ratio of the ratios Eq. (2.14), for thed to theu flavor, at∆2 = −0.25 GeV2 andξ3 = 0.2 (full
line) and in the forward limit (dashed line).

while for heavier nuclei calculations cannot be performed with comparable precision.
B) Binding effects. In the previous section it has been explained how Eq. (2.8) takes into account
properly the nucleon momentum and energy distributions through a non-diagonal spectral func-
tion. In the following, the result obtained neglecting binding effects, i.e., by using a momentum
distribution instead of a spectral function, will be shown.When a momentum distribution is used
instead of a spectral function, not only the IA, but also another approximation, the so called “clo-
sure approximation”, has been used: an average excitation energy, Ē∗, has been inserted in the
expression of the delta function appearing in the definitionof the spectral function Eq. (2.6), so
that the completeness of the two body recoiling states can beused [12]:

P3
N(~p,~p+~∆,E) ≃ ¯∑M ∑

s
〈~P′M|a

~p+~∆,s
a†
~p,s|~PM〉δ (E −Emin − Ē∗)

= n(~p,~p+~∆)δ (E −Emin − Ē∗) , (2.15)

and the spectral function is approximated by a one-body non diagonal momentum distribution
times a delta function defining an average value of the removal energy. Whenever the momentum
distribution is used instead of the spectral function, in addition to the IA the above closure approx-
imation has been used assumingĒ∗ = 0, i.e., binding effects have been completely neglected. The
difference between the full calculation and the one using the momentum distribution, for the ratio
Eq. (2.14), is shown in Fig. 3. It is seen that, while the difference is a few percent in the forward
limit, it grows in the non-forward case, becoming an effect of 5 % to 10 % betweenx = 0.4 and 0.7.
From this analysis, the same three main conclusions, arisenin the study of the flavor dependence
can be drawn.
C) Dependence on the nucleon-nucleon potential. In Fig. 3, the difference is shown between the
full calculation, Eq. (2.14), evaluated with the AV18 interaction [15], and the same quantity, eval-
uated by means of the AV14 one. It is seen that there is basically no difference in the forward
limit, confirming previous findings in inclusive DIS [17], while a sizable difference is seen in the
non forward case (preliminary results of this behavior havebeen accounted for in a talk at a Con-
ference [5]). From these analyses the same conclusions of the previous two subsections can be
drawn. We note on passing that a difference between observables evaluated using AV18 and AV14
potentials is not easily found, in particular in inclusive DIS.
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Rd(x3,ξ3=0.2,∆2=-0.25 GeV2)
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Figure 3: Left: upper panel: the ratio Eq. (2.14), in the forward limit, for thed flavor, corresponding to
the full result of the present approach (full line), compared with the one obtained using in the numerator the
approximation Eq. (2.15) with̄E∗ = 0, i.e., using a momentum distribution instead of a spectralfunction
(dashed line); lower panel: the same as before, but evaluated at ∆2 = −0.25 GeV2 andξ3 = 0.2. Right:
upper panel: the ratio Eq. (2.14), in the forward limit, for the d flavor, corresponding to the full result of
the present approach, where use is made of the AV18 interaction (full line), compared with the one obtained
using in the numerator the AV14 interaction (dashed line): the two curves cannot be distinguished; lower
panel: the same, but evaluated at∆2 = −0.25 GeV2 andξ3 = 0.2: now the curves are distinguishable.

3. GPDs for the 3H target

In the perspective of using3H targets after the 12 GeV upgrade of JLab [19], it is useful to
address what could be learnt from simultaneous measurements with trinucleon targets,3He and3H.
The procedure proposed firstly in Ref. [6] for the unpolarized DIS to extract, with unprecedented
precision, the ratio of down to up quarks in the proton,d(x)/u(x), at large Bjorkenx, is extended
here to the case of the GPDs of trinucleons. To minimize nuclear effects, the following “super-
ratio”, a generalization of the one proposed in Ref. [6], canbe defined

Sqq′(x,ξ ,∆2) = RH
q (x,ξ ,∆2)/RT

q′(x,ξ ,∆2) , (3.1)

where the ratio

RA
q (x,ξ ,∆2) =

HA
q (x,ξ ,∆2)

ZAH p
q (x,ξ ,∆2)+ NAHn

q (x,ξ ,∆2)
, (3.2)

has been introduced for3He (A = H) and3H (A = T ), with q = u,d, ZA(NA) the number of protons
(neutrons) in the nucleusA, andHN

q (x,ξ ,∆2) the GPD of the quarkq in the nucleonN = p,n. Now,
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Sdu(x, ξ, ∆2)
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Figure 4: The ratio Eq. (3.6), in the forward limit (dot-dashed line),at ∆2 = −0.15 GeV2 andξ3 = 0.1
(dashed line), and at∆2 = −0.25 GeV2 andξ3 = 0.2 (full line).

using the isospin symmetry of GPDs, we can call

Hu(x,ξ ,∆2) = H p
u (x,ξ ,∆2) = Hn

d (x,ξ ,∆2) , (3.3)

Hd(x,ξ ,∆2) = H p
d (x,ξ ,∆2) = Hn

u (x,ξ ,∆2) , (3.4)

so that Eq. (3.1) is given, for example forq = d andq′ = u, by the simple relation

Sdu(x,ξ ,∆2) =
HH

d (x,ξ ,∆2)

HT
u (x,ξ ,∆2)

, (3.5)

a quantity in principle observable. In the IA approach discussed here, using Eq. (2.8) to calculate
the nuclear GPDs, one has therefore

Sdu(x,ξ ,∆2) =

∫ 1
x

dz
z

{

hH
p (z,ξ ,∆2)Hd

(

x
z ,

ξ
z ,∆2

)

+ hH
n (z,ξ ,∆2)Hu

(

x
z ,

ξ
z ,∆2

)}

∫ 1
x

dz
z

{

hT
n (z,ξ ,∆2)Hd

(

x
z ,

ξ
z ,∆2

)

+ hT
p (z,ξ ,∆2)Hu

(

x
z ,

ξ
z ,∆2

)} , (3.6)

wherehH(T )
p(n)

(z,ξ ,∆2) represents the light cone off diagonal momentum distribution for the proton

(neutron) in3He (3H). If the Isospin Symmetry were valid at the nuclear level, one should have
hH

p (z,ξ ,∆2) = hT
n (z,ξ ,∆2), andhH

n (z,ξ ,∆2) = hT
p (z,ξ ,∆2), so that the ratio Eq. (3.6) would be

identically 1. From the previous analysis, it is clear anyway that these relations are only approxi-
mately true, and some deviations are expected. In Fig. 4, thesuper-ratioSdu(x,ξ ,∆2), Eq. (3.1),
evaluated by using the AV18 interaction for the nuclear GPDsin Eq. (2.8), taking into account
therefore the Coulomb interaction between the protons in3He and a weak charge independence
breaking term, is shown for different values of∆2 ≤ 0.25 GeV2 andξ . While it is seen that, as
expected,Sdu(x,ξ ,∆2) is not exactly 1 and the difference gets bigger with increasing ∆2 andξ ,
for the low values of∆2 andξ relevant for the present investigation of GPDs, such a difference
keeps being a few percent one. It would be very interesting tomeasure this ratio experimentally.
If strong deviations from this predicted behavior were observed, there would be a clear evidence
that the description in terms of IA, i.e. in terms of the conventional scenario of partons confined in
nucleons bound together by a realistic interaction, breaksdown. In other words one could have a
clear signature of possible interesting exotic effects.
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In summary, conventional nuclear effects on the unpolarized quark GPD for the trinucleons
have been described, using a realistic microscopic calculation. The issue of applying the obtained
GPDs to estimate cross-sections and to establish the feasibility of experiments, is in progress and
will be presented elsewhere.
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