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1. Introduction

Bethe-Salpeter (BS) equation for a relativistic boundeystvas initially formulated in the
Minkowski space [3]. It determines the binding energy arelBl$ amplitude. However, in prac-
tice, finding the solution in Minkowski space is made difficdue its singular behaviour. The
singularities are integrable, but the standard approaitesolving integral equation fail. To cir-
cumvent this problem, the BS equation is usually transfoisrbg means of the Wick rotation, into
Euclidean momentum space.

Some attempts have been recently made to obtain the Minkd&lamplitudes. The ap-
proach proposed in [4] is based on the integral representafithe amplitudes and solutions have
been obtained for the ladder scalar case [4, 5] as well agrsune simplifying ansatz, for the
fermionic one [6]. Another approach [7] relies on a sepaagproximation of the kernel which
leads to analytic solutions.

In previous works [1, 2] we have proposed a new method to fia@®amplitude in Minkowski
space and applied it to the system of two spinless partiti&s. in the papers [4, 5, 6], it is based
on Nakanishi integral representation [8] of the BS ampétudhe main difference between our
approach and those followed in [4, 5, 6] is the fact that we theelight-front projection. This
eliminates the singularities related to the BS Minkowskipéitndes. The method is valid for any
kernel given by the irreducible Feynman graphs.

We present in this contribution a generalisation to the fensystems of our preceding works
[1, 2]. A more detailed version can be found in [9]. We will gbat the direct application to the
fermionic kernels of the method used in the spinless cadevigever married with some numer-
ical difficulties. Although they could be overcome by a propeatment of the singularities, in
this work we propose an alternative method allowing to stheeBS equation for two fermions
in Minkowski space with the same degree of accuracy thanherstalar case. The numerical
applications are here limited to tli€ = 0" state.

The main steps in deriving system of equations for the Nakanieight functions are ex-
plained in sect. 2, starting from the original BS equatioruniérical results for the scalar, pseu-
doscalar and massless vector exchange couplings are fg@sarsect. 3. Section 4 contains
concluding remarks.

2. System of equations

We have considered the following fermid# (m) - meson {, i) interaction Lagrangians:
(i) Scalar couplingZ?) = g¥ Wo.
(ii) Pseudoscalar coupling’\¥ = igWysWe.
(iii) Massless vector exchangﬁﬁ‘,{) = ll_Jy“ Wq,. with M,y = —igu\,/q2 as vector propagator.
Each interaction vertex has been regularized with a veaenr factorF (k—k’) by the replace-
mentg — gF (k— k') and we have choséhin the form:

u2_/\2

@At 1)

F(q) =
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Let us first consider the case of the scalar coupling and thresqmonding ladder kernel. The
BS equation for the amplitud® reads:

_imeiprk) [ dW (—igh)F2(k—K) ] i(m—3p+Kk)
(k. p) 2 [/ 2mt PK P e i) G-k —mEtie
(2.2)

(Ap+k2—m+ie

Wherep =k +k, k= (k]_ — k2)/2, kK = (k&_ — k’2)/2
In the case ofi™ = 0" state, the BS amplitude has the following general form:

oKk, p) =SSP+ SP+ e+ @ (2.3)

where§ are independent spin structures<{4 matrices) andy are scalar functions & andp-k.

The choice ofS is to some extent arbitrary. To benefit from useful orthodjpnaroperties

we have taken

S=% S= %f%, S= T\A—fms— %k%, S = #cprukv V5,
wheregy,, = ii(yu Yo — WYu). The antisymmetry of the amplitude (2.3) with respect toghemu-
tation 1 2 implies for the scalar functiongm 2 4(k, p) = @24(—K, p), @(k, p) = —@(—k, p).

A decomposition similar to (2.3) was used in [6] to solve tt&dgjuation for a quark-antiquark
system but the solution was approximated keeping only teetérmS; ¢, .

We substitute (2.3) in eq. (2.2), multiply it I& and take traces. As we will see (left panel in
fig. 1 below), the kernel in the resulted equation, in conttashe spinless case, is still singular.
These singularities are integrable. They do not prevem fiiading numerical solution, but they
reduce its precision. This can be avoided by a proper ragatamn of equation, multiplying both
sides of it by the factor

2 2
nk p) =73 (mzz Lz) — (mzz L2) : (2.4)
(5 +k)2—L2+ie] [(B—Kk)2—L2+ig]
This factor has the form of a product of two scalar propagatoth masd.. It plays the role of form
factor suppressing the high off-mass shell values of thetitaent four-moment#?, = (5 + k)2
and tends to 1 wheh — . In this way, we get the following system of equations forithariant
functionsq:

_ nk,p)
r’(k,p) fﬂ(k,p) - [(%)_|_k)2_rr]2+|£”(§p_k)2_rr]2+lg]
d4k/ . 2|:2 k—K 4 / /
/ (2m) (k?k’)Z(_ uzlig ,Zlc” (kK. p)@ (K, p), (2.5)

Sincen (k, p) # 0, the equation thus obtained is strictly equivalent to thgiral one. We will
see however that, due to the presence offtifector, the light front projection modifies the resulting
kernels which become less singular functions. The coeffisg; are determined by traces and are
given in [9].

Then we represent each of the BS componeg(is p) by means of the Nakanishi integral

1 0 i Zl)
kp =/ dZ /[ d G(, . 26
#lop) /1 /0 V[k2+p-kz'+%1M2—mZ—y’+is]3 (26
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Figure 1: Left: The kernel matrix element44(y,zy,Z) forz= 0.7, 0.9, 0.95 as a function of and fixed
values ofy, y. The discontinuity is finite at a fixed value pbut diverges whea — 1.
Right: Regularized kern&lg,(y,z y',Z) v.s. Z for fixed values oz = 0.7, 0.9, 0.95 andL = 1.1m.

and apply the light-front projection to the set of coupledi@ipns for the corresponding weight
functionsgi(y, z). As mentioned in the Introduction, this projection, whisfan essential ingredient
of our previous works [1, 2, 10], consists in replackg- k+ wﬂ_pﬁ in eq. (2.5) and integrating
overf3 in all the real domain.

The technical details of the light-front projection are #émto those explained in ref. [2] for
the case of the spinless particles. We obtain in this way afssiupled two-dimensional integral
equations:

“ay [ avoyzy ) a2 =S [y [ @Viyzy. e .2 27
fy o [evevzy ey =3 oy [ evlvaydevd) @)

The kernelV? and also\/i‘jj for all types of couplings and states are given in [9]. Thesaéls
depend on the parameter Closer isL to m, smoother is the kernel and more stable are the
numerical solutions. However the weight functianéy, z) as well as the binding energies provided
by (2.7) are independent bf

The kernelVy is finite and it vanishes for = +1. For a fixed values of,zandy/, Vg is a
continuous function of with a discontinuous derivative dt= z.

As already mentioned, without-factor, most of the kernel matrix eIemeM$ are singular.
Namely, they are discontinuous Zt= z In some cases — likeg. Vi4 displayed in fig. 1 (left) —
the value of the discontinuity, although being finite at fixatle ofz, diverges whez — +1.

Forn # 1, i.e, for a finite value ofL in (2.4), theZ-dependence of the regularized kernels is
much more smooth and therefore better adapted for obtamiograte numerical solutions. In fig.
1 (right) we plotted the regularized kerr\@l'4 as a function of for the same argumenisz y and
parameters than in fig. 1 (left), where it was calculated atittthen (k, p) factor. As one can see,
the kernel is now a continuous function zf

We would like to emphasize again that despite the fact thenhtn-regularized and regular-
ized kernels are very different from each other (compege figs. 1, left and right) and that the
regularized ones strongly depend on the valu&,ahey provide — up to numerical inaccuracies
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— the same binding energies and weight functigiiy,z). We construct in this way a family of
equivalent kernels.

Table 1: Left: Coupling constang® as a function of binding energ¥ for the J = 0 state with scalar (S),
pseudoscalar (PS) and massless vector (positronium) egeternels. The vertex form factor parameter is
N\ = 2 and the parameter of thefactorL = 1.1

Right: Coupling constangt;%S as a function of binding energg for the positronium] = 0 state in BS
equation in the region of stability without vertex form fac{A — ), i.e. g < 1. They are compared to the
non relativistic resultg?.

S PS positronium
u 0.15 0.50| 0.15 0.50 0.0 B o o2
B o° o2 o2 Rz P NR BS

0.01| 251 3.18
0.02| 3.55 4.65
0.03| 435 5.75
0.04| 5.03 6.64
0.05| 562 7.38
0.06| 795 8.02
0.07| 11.24 8.57
0.08 | 13.77 9.06
0.09| 15.90 9.49

0.01| 7.813 25.23 224.8 4223 3.265
0.02| 10.05 29.49 2329 430.1 4.910
0.03| 11.95 33.01] 2385 4358 6.263
0.04| 13.69 36.19 243.1 440.4 7.457
0.05| 15.35 39.19 247.0 4443 8.548
0.10| 23.12 5282 262.1 459.9 13.15
0.20| 38.32 78.25 282.9 480.7 20.43
0.30| 54.20 103.8 298.6 497.4 26.50
0.40| 71.07v 130.7] 311.8 515.2 31.84
0.50| 86.95 157.4/ 323.1 525.9 36.62

3. Numerical results

The solutions of eq. (2.7) have been obtained using the sachaifjues than in ref [2]. We
have computed the binding energies, define® as2m— M, and BS amplitudes, for th&= 0"
two fermion system interacting with massive scalar (S) asalidoscalar (PS) exchange kernels and
for the fermion-antifermion system interacting with massl vector exchange in Feynman gauge.
In the limit of an infinite vertex form factor paramet&r— o, the later case would correspond
to positronium with an arbitrary value of the coupling camgt All the results presented in this
section are given in the constituent mass units=(1) and withL = 1.1.

For the scalar and pseudoscalar cases, the binding enelgi@saed with the form factor
paramete/\ = 2 are given in the left table 1. We present the resultgifer0.15 andu = 0.50 boson
masses. They have been compared to those obtained in ayzedltulation in Euclidean space
[11] using a slightly different form factor. Once taken igttcount this correction, our scalar results
are in full agreement (four digits) with [11]. The pseuddacanes show small discrepancies
(=~ 0.5%). We have also computed the binding energies by direchiyrgy the fermion BS equation
the Euclidean space using a method independent of the oderugel]. Our Euclidean results are
in full agreement with those given in the table 1.

The B(g?) dependence for the scalar and pseudoscalar couplingstieclo figs. 2. Notice
the differentg? scales of both dependences. The pseudoscalar bindingesharg fast increasing
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Figure2: Left: Binding energy for scalar exchange wgé.for A=2,L = 1.1, u = 0.15 andu = 0.5.
Right: Binding energy for pseudoscalar exchangegfgor A =2,L = 1.1, u = 0.15 andu = 0.5.
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Figure 3: Binding energy for J=0 positronium state vergfdgblack solid line) in the stability regiog <
gc = 1. Dashed and dotted-dashed curves correspond to the rigsuitisreasing values of the vertex form
factor parametef\. They are compared to the non relativistic results (redidoie).

functions ofg? and thus more sensitive to the accuracy of numerical metfiids sharp behaviour
was also exhibit when solving the corresponding light-frequation [12].

In the positronium case, we found the existence a critidalevaf the coupling constagt = 1.
Forg < g, solutions with finite binding energy exist without form fac(i.e., at A — ).

The ground state positronium binding energies withoutexeidrm factor are given in table 1
(right) for values of the coupling beloge, nonrelativistic resultg? g = 8n\/% are included for
comparison. One can see that the relativistic effects andswe.

These results are displayed in fig. 3 (black solid line), amtigared to the binding energies
obtained with two values of the form factor parameter 2 (dashed) andh = 5 (dot-dashed). The
stability region is limited by a vertical dotted line gt= g. = 1. Beyond this value the binding
energy without form factor becomes infinite and we have foBfgl— g¢) ~ 0.10. The inclusion
of the form form factor has a repulsive effece. for a fixed value of the coupling constant it
provides a binding energy of the system which is smaller thahe A — oo limit (no cut-off).
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Finally, in figs. 4 we present some examples of the Nakaniggifunctionsg;(y,z). They
correspond to 8 = 0.1 state with the scalar coupling and the same paramater®, u = 0.50
than in table 1. In the left figure is shown tiredependence for a fixed value nand in the right
figure — thez-dependence for a fixeg Notice the regular behaviour of these functions as well as
their well defined parity with respect - g; > 4 are even ands is odd.
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Figure 4. Left: Nakanishi weight functions v.sy for z= 0.6, for scalar exchange fok =2, L = 1.1,
u = 0.15 andu = 0.5. Right: Nakanishi weight functions v.zfor y = 0.54.

Corresponding BS amplitudes are displayed in figs. 5. The left panel representskighae-
pendence ofy for a fixed value of k |=0.2. They exhibit a singular behaviour which corresponds
to the pole of free propagatoks = & — % in r.-h.-side of eq. 2.2. The right panel represents the
| k | dependence of the amplitud@sfor a fixed valuey = 0.04. For this choice of arguments, the
amplitudes are smooth functions \cﬁ , though they will be also singular fég > % = 0.05.
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Figure5: Left: Bethe-Salpeter Minkowski amplitudes, correspogdimfig. 4, v.s.kg for k= |R| =0.2. The
amplitudesp andg are indistinguishable. Right: The same as at lefthk/:s| k | for kp=0.04.

4. Conclusions

We have presented a new method to obtain the solutions of ¢fieeESalpeter equation in
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Minkowski space for the two-fermion system. It is based ore&ahishi integral representation of
the amplitude and light-front projection and constitutagtural extension our previous works for
the scalar case [1, 2].

A straightforward generalization of this approach, howeesults into a singular fermionic
kernel. In order to smooth this singularities, a proper l&gzation of the kernels has been pro-
posed. This generates a family of strictly equivalent eignatdepending on one parameter
Their solution gives the same binding energies and Nakewisight functionsg;(y, z) .

The binding energies for the scalar and pseudoscalar egehannels and for massless vector
exchange (positronium) have been found. They coincidetiélones obtained in Euclidean space,
thus providing a validity test of our method. The solutions the scalar and positronium states
without vertex form factor — ) are found to be stable below the following critical valgg®f
the coupling constangy; = 2t (scalar) andy; = 7T (positronium).

The BS amplitudes in Minkowski are obtained in terms of thenpoted Nakanishi weight
functions. They exhibit a singular behaviour due to the polethe free propagators.
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