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1. Introduction

Bethe-Salpeter (BS) equation for a relativistic bound system was initially formulated in the
Minkowski space [3]. It determines the binding energy and the BS amplitude. However, in prac-
tice, finding the solution in Minkowski space is made difficult due its singular behaviour. The
singularities are integrable, but the standard approachesfor solving integral equation fail. To cir-
cumvent this problem, the BS equation is usually transformed, by means of the Wick rotation, into
Euclidean momentum space.

Some attempts have been recently made to obtain the Minkowski BS amplitudes. The ap-
proach proposed in [4] is based on the integral representation of the amplitudes and solutions have
been obtained for the ladder scalar case [4, 5] as well as, under some simplifying ansatz, for the
fermionic one [6]. Another approach [7] relies on a separable approximation of the kernel which
leads to analytic solutions.

In previous works [1, 2] we have proposed a new method to find the BS amplitude in Minkowski
space and applied it to the system of two spinless particles.Like in the papers [4, 5, 6], it is based
on Nakanishi integral representation [8] of the BS amplitude. The main difference between our
approach and those followed in [4, 5, 6] is the fact that we usethe light-front projection. This
eliminates the singularities related to the BS Minkowski amplitudes. The method is valid for any
kernel given by the irreducible Feynman graphs.

We present in this contribution a generalisation to the fermion systems of our preceding works
[1, 2]. A more detailed version can be found in [9]. We will seethat the direct application to the
fermionic kernels of the method used in the spinless case, ishowever married with some numer-
ical difficulties. Although they could be overcome by a proper treatment of the singularities, in
this work we propose an alternative method allowing to solvethe BS equation for two fermions
in Minkowski space with the same degree of accuracy than for the scalar case. The numerical
applications are here limited to theJπ = 0+ state.

The main steps in deriving system of equations for the Nakanishi weight functions are ex-
plained in sect. 2, starting from the original BS equation. Numerical results for the scalar, pseu-
doscalar and massless vector exchange couplings are presented in sect. 3. Section 4 contains
concluding remarks.

2. System of equations

We have considered the following fermion (Ψ,m) - meson (φ ,µ) interaction Lagrangians:

(i) Scalar couplingL (s)
int = gΨ̄Ψφ .

(ii) Pseudoscalar couplingL (ps)
int = igΨ̄γ5Ψφ .

(iii) Massless vector exchangeL
(v)

int = Ψ̄γµ Ψφµ . with Πµν = −igµν/q2 as vector propagator.

Each interaction vertex has been regularized with a vertex form factorF(k−k′) by the replace-
mentg → gF(k− k′) and we have chosenF in the form:

F(q) =
µ2−Λ2

q2−Λ2+ iε
. (2.1)
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Let us first consider the case of the scalar coupling and the corresponding ladder kernel. The
BS equation for the amplitudeΦ reads:

Φ(k, p) =
i(m + 1

2 p̂+ k̂)

(1
2 p+ k)2−m2+ iε

[

∫

d4k′

(2π)4 Φ(k′, p)
(−ig2)F2(k− k′)
(k− k′)2−µ2+ iε

]

i(m− 1
2 p̂+ k̂)

(1
2 p− k)2−m2+ iε

,

(2.2)
wherep = k1 + k2, k = (k1− k2)/2, k′ = (k′1− k′2)/2.

In the case ofJπ = 0+ state, the BS amplitude has the following general form:

Φ(k, p) = S1φ1 + S2φ2 + S3φ3 + S4φ4 (2.3)

whereSi are independent spin structures (4×4 matrices) andφi are scalar functions ofk2 andp ·k.
The choice ofSi is to some extent arbitrary. To benefit from useful orthogonality properties

we have taken

S1 = γ5, S2 =
1
M

p̂γ5, S3 =
k · p
M3 p̂γ5−

1
M

k̂ γ5, S4 =
i

M2σµν pµkν γ5,

whereσµν = i
2(γµγν − γνγµ). The antisymmetry of the amplitude (2.3) with respect to thepermu-

tation 1↔ 2 implies for the scalar functions:φ1,2,4(k, p) = φ1,2,4(−k, p), φ3(k, p) = −φ3(−k, p).
A decomposition similar to (2.3) was used in [6] to solve the BS equation for a quark-antiquark

system but the solution was approximated keeping only the first termS1φ1.
We substitute (2.3) in eq. (2.2), multiply it bySi and take traces. As we will see (left panel in

fig. 1 below), the kernel in the resulted equation, in contrast to the spinless case, is still singular.
These singularities are integrable. They do not prevent from finding numerical solution, but they
reduce its precision. This can be avoided by a proper regularization of equation, multiplying both
sides of it by the factor

η(k, p) =
(m2−L2)

[

( p
2 + k)2−L2+ iε

]

(m2−L2)
[

( p
2 − k)2−L2+ iε

] (2.4)

This factor has the form of a product of two scalar propagators with massL. It plays the role of form
factor suppressing the high off-mass shell values of the constituent four-momentak2

1,2 = ( p
2 ± k)2

and tends to 1 whenL → ∞. In this way, we get the following system of equations for theinvariant
functionsφi:

η(k, p) φi(k, p) =
η(k, p)

[( p
2 + k)2−m2+ iε ][( p

2 − k)2−m2+ iε ]

×

∫

d4k′

(2π)4

ig2 F2(k− k′)
(k− k′)2−µ2 + iε

4

∑
j=1

ci j(k,k
′, p)φ j(k

′, p), (2.5)

Sinceη(k, p) 6= 0, the equation thus obtained is strictly equivalent to the original one. We will
see however that, due to the presence of theη factor, the light front projection modifies the resulting
kernels which become less singular functions. The coefficientsci j are determined by traces and are
given in [9].

Then we represent each of the BS componentsφi(k, p) by means of the Nakanishi integral

φi(k, p) =

∫ 1

−1
dz′

∫ ∞

0
dγ ′

gi(γ ′,z′)
[

k2 + p · k z′ + 1
4M2−m2− γ ′ + iε

]3 . (2.6)
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Figure 1: Left: The kernel matrix elementsV14(γ,z;γ ′,z′) for z = 0.7, 0.9, 0.95 as a function ofz′ and fixed
values ofγ,γ ′. The discontinuity is finite at a fixed value ofz but diverges whenz → 1.
Right: Regularized kernelV d

14(γ,z;γ ′,z′) v.s. z′ for fixed values ofz = 0.7, 0.9, 0.95 andL = 1.1m.

and apply the light-front projection to the set of coupled equations for the corresponding weight
functionsgi(γ ,z). As mentioned in the Introduction, this projection, which is an essential ingredient
of our previous works [1, 2, 10], consists in replacingk → k + ω

ω ·pβ in eq. (2.5) and integrating
overβ in all the real domain.

The technical details of the light-front projection are similar to those explained in ref. [2] for
the case of the spinless particles. We obtain in this way a setof coupled two-dimensional integral
equations:

∫ ∞

0
dγ ′

∫ 1

−1
dz′ V g(γ ,z;γ ′,z′) gi(γ ′,z′) = ∑

j

∫ ∞

0
dγ ′

∫ 1

−1
dz′ V d

i j(γ ,z;γ ′,z′)g j(γ ′,z′) (2.7)

The kernelV g and alsoV d
i j for all types of couplings and states are given in [9]. These kernels

depend on the parameterL. Closer isL to m, smoother is the kernel and more stable are the
numerical solutions. However the weight functionsgi(γ ,z) as well as the binding energies provided
by (2.7) are independent ofL.

The kernelVg is finite and it vanishes forz = ±1. For a fixed values ofγ ,z andγ ′, Vg is a
continuous function ofz′ with a discontinuous derivative atz′ = z.

As already mentioned, withoutη-factor, most of the kernel matrix elementsV d
i j are singular.

Namely, they are discontinuous atz′ = z. In some cases – likee.g. V14 displayed in fig. 1 (left) –
the value of the discontinuity, although being finite at fixedvalue ofz, diverges whenz →±1.

For η 6= 1, i.e., for a finite value ofL in (2.4), thez′-dependence of the regularized kernels is
much more smooth and therefore better adapted for obtainingaccurate numerical solutions. In fig.
1 (right) we plotted the regularized kernelV d

14 as a function ofz′ for the same argumentsγ ,z,γ ′ and
parameters than in fig. 1 (left), where it was calculated without theη(k, p) factor. As one can see,
the kernel is now a continuous function ofz′.

We would like to emphasize again that despite the fact that the non-regularized and regular-
ized kernels are very different from each other (comparee.g. figs. 1, left and right) and that the
regularized ones strongly depend on the value ofL, they provide – up to numerical inaccuracies
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– the same binding energies and weight functionsgi(γ ,z). We construct in this way a family of
equivalent kernels.

Table 1: Left: Coupling constantg2 as a function of binding energyB for theJ = 0 state with scalar (S),
pseudoscalar (PS) and massless vector (positronium) exchange kernels. The vertex form factor parameter is
Λ = 2 and the parameter of theη factorL = 1.1
Right: Coupling constantg2

BS as a function of binding energyB for the positroniumJ = 0 state in BS
equation in the region of stability without vertex form factor (Λ → ∞), i.e. g < π . They are compared to the
non relativistic resultsg2

NR.

S PS positronium

µ 0.15 0.50 0.15 0.50 0.0

B g2 g2 g2 g2 g2

0.01 7.813 25.23 224.8 422.3 3.265
0.02 10.05 29.49 232.9 430.1 4.910
0.03 11.95 33.01 238.5 435.8 6.263
0.04 13.69 36.19 243.1 440.4 7.457
0.05 15.35 39.19 247.0 444.3 8.548
0.10 23.12 52.82 262.1 459.9 13.15
0.20 38.32 78.25 282.9 480.7 20.43
0.30 54.20 103.8 298.6 497.4 26.50
0.40 71.07 130.7 311.8 515.2 31.84
0.50 86.95 157.4 323.1 525.9 36.62

B g2
NR g2

BS

0.01 2.51 3.18
0.02 3.55 4.65
0.03 4.35 5.75
0.04 5.03 6.64
0.05 5.62 7.38
0.06 7.95 8.02
0.07 11.24 8.57
0.08 13.77 9.06
0.09 15.90 9.49

3. Numerical results

The solutions of eq. (2.7) have been obtained using the same techniques than in ref [2]. We
have computed the binding energies, defined asB = 2m−M, and BS amplitudes, for theJ = 0+

two fermion system interacting with massive scalar (S) and pseudoscalar (PS) exchange kernels and
for the fermion-antifermion system interacting with massless vector exchange in Feynman gauge.
In the limit of an infinite vertex form factor parameterΛ → ∞, the later case would correspond
to positronium with an arbitrary value of the coupling constant. All the results presented in this
section are given in the constituent mass units (m = 1) and withL = 1.1.

For the scalar and pseudoscalar cases, the binding energiesobtained with the form factor
parameterΛ = 2 are given in the left table 1. We present the results forµ = 0.15 andµ = 0.50 boson
masses. They have been compared to those obtained in a previous calculation in Euclidean space
[11] using a slightly different form factor. Once taken intoaccount this correction, our scalar results
are in full agreement (four digits) with [11]. The pseudoscalar ones show small discrepancies
(≈ 0.5%). We have also computed the binding energies by directly solving the fermion BS equation
the Euclidean space using a method independent of the one used in [11]. Our Euclidean results are
in full agreement with those given in the table 1.

TheB(g2) dependence for the scalar and pseudoscalar couplings is plotted in figs. 2. Notice
the differentg2 scales of both dependences. The pseudoscalar binding energies are fast increasing

5
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Figure 2: Left: Binding energy for scalar exchange v.s.g2 for Λ = 2, L = 1.1, µ = 0.15 andµ = 0.5.
Right: Binding energy for pseudoscalar exchange v.s.g2 for Λ = 2, L = 1.1, µ = 0.15 andµ = 0.5.
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Figure 3: Binding energy for J=0 positronium state versusg2 (black solid line) in the stability regiong <

gc = π . Dashed and dotted-dashed curves correspond to the resultsfor increasing values of the vertex form
factor parameterΛ. They are compared to the non relativistic results (red solid line).

functions ofg2 and thus more sensitive to the accuracy of numerical methods. This sharp behaviour
was also exhibit when solving the corresponding light-front equation [12].

In the positronium case, we found the existence a critical value of the coupling constantgc = π.
For g < gc, solutions with finite binding energy exist without form factor (i.e., atΛ → ∞).

The ground state positronium binding energies without vertex form factor are given in table 1
(right) for values of the coupling belowgc, nonrelativistic resultsg2

NR = 8π
√

B/m are included for
comparison. One can see that the relativistic effects are repulsive.

These results are displayed in fig. 3 (black solid line), and compared to the binding energies
obtained with two values of the form factor parameterΛ = 2 (dashed) andΛ = 5 (dot-dashed). The
stability region is limited by a vertical dotted line atg = gc = π. Beyond this value the binding
energy without form factor becomes infinite and we have foundB(g → gc) ≈ 0.10. The inclusion
of the form form factor has a repulsive effect,i.e. for a fixed value of the coupling constant it
provides a binding energy of the system which is smaller thanin theΛ → ∞ limit (no cut-off).
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Finally, in figs. 4 we present some examples of the Nakanishi weigh functionsgi(γ ,z). They
correspond to aB = 0.1 state with the scalar coupling and the same parametersΛ = 2, µ = 0.50
than in table 1. In the left figure is shown theγ-dependence for a fixed value ofz and in the right
figure – thez-dependence for a fixedγ . Notice the regular behaviour of these functions as well as
their well defined parity with respect toz – g1,2,4 are even andg3 is odd.
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Figure 4: Left: Nakanishi weight functions v.s.γ for z = 0.6, for scalar exchange forΛ = 2, L = 1.1,
µ = 0.15 andµ = 0.5. Right: Nakanishi weight functions v.s.z for γ = 0.54.

Corresponding BS amplitudesφi are displayed in figs. 5. The left panel represents thek0 de-
pendence ofφi for a fixed value of|~k |= 0.2. They exhibit a singular behaviour which corresponds
to the pole of free propagatorsk0 = εk −

M
2 in r.-h.-side of eq. 2.2. The right panel represents the

|~k | dependence of the amplitudesφi for a fixed valuek0 = 0.04. For this choice of arguments, the
amplitudes are smooth functions of|~k |, though they will be also singular fork0 > B

2 = 0.05.
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Figure 5: Left: Bethe-Salpeter Minkowski amplitudes, corresponding to fig. 4, v.s.k0 for k = |~k|= 0.2. The
amplitudesφ1 andφ2 are indistinguishable. Right: The same as at left v.s.k =|~k | for k0=0.04.

4. Conclusions

We have presented a new method to obtain the solutions of the Bethe-Salpeter equation in
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Minkowski space for the two-fermion system. It is based on a Nakanishi integral representation of
the amplitude and light-front projection and constitutes anatural extension our previous works for
the scalar case [1, 2].

A straightforward generalization of this approach, however results into a singular fermionic
kernel. In order to smooth this singularities, a proper regularization of the kernels has been pro-
posed. This generates a family of strictly equivalent equations depending on one parameterL.
Their solution gives the same binding energies and Nakanishi weight functionsgi(γ ,z) .

The binding energies for the scalar and pseudoscalar exchange kernels and for massless vector
exchange (positronium) have been found. They coincide withthe ones obtained in Euclidean space,
thus providing a validity test of our method. The solutions for the scalar and positronium states
without vertex form factor (Λ → ∞) are found to be stable below the following critical valuesgc of
the coupling constant:gc = 2π (scalar) andgc = π (positronium).

The BS amplitudes in Minkowski are obtained in terms of the computed Nakanishi weight
functions. They exhibit a singular behaviour due to the poles of the free propagators.
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