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1. Introduction

If one studies the literature on treatments of nuclear systems ‘including relativity’ with ones
that are called ‘non-relativistic’, one notices that thereis no consensus about what these terms
mean. Therefore, one may try to find some common ground where all researchers in few-body
systems can agree.

The present note is a first step in this direction. We define a Lagrangean that is simple enough
to derive a simple, effective nucleon-nucleon interaction, but realistic enough in the sense that this
interaction supports an S-wave bound state that closely resembles the S-wave part of the deuteron.
The Lagrangean chosen is inspired by theσ −ω-model, also known as the Walecka model [1]. The
present model means a drastic simplification, which of course does not do justice to the sophistica-
tion of realistic nucleon-nucleon interaction, found to beneeded to achieve precise agreement with
the data.

In view of the necessity of regularization and the fact that in different relativistic approaches
regularization may take different forms, part of the model proposed here is Pauli-Villars regular-
ization [2]. This amounts to introducing for every exchanged physical boson an unphysical one
that regulates the boson propagator in such a way that the interaction defined by boson exchange
becomes well-behaved in momentum space.

Using this regulated Lagrangean and the boson-exchange idea to determine the effective in-
teraction between two nucleons, one can now use this interaction in many ‘relativistic’ or ‘non-
relativistic’ formalisms. Below we apply this idea in the simplest possible context, namely to
write the interaction in the form of a static potential to be used in the non-relativistic Schrödinger
equation. Our model is compared throughout to the Malfiet-Tjon potential [3].

In the benchmark proposed here, nucleon-nucleon interactions based on effective-field theory
are not included, solely for the reason that they are limitedto low energies by construction.

2. Lagrangean density of the Walecka model

The interaction Lagrangean densities in the Walecka model are given by [1, 4, 5]

LNNσ = gσ ψ̄ψσ , LNNω = igω ψ̄γµψωµ +
fω

4mN
ψ̄σµνψ(∂ µων −∂ νωµ). (2.1)

Here ψ denotes the nucleon field of massmN, σ denotes a neutral scalar meson field of mass
mσ andωµ denotes a neutral vector meson field of massmω . LNNσ describes the scalar meson
exchange andLNNω describes the vector meson exchange between the nucleons. For simplicity,
we takefω = 0.

Using the Feynman rules the second-order amplitudes for scalar and vector exchange become,
respectively

V(2)
σ = g2

σ ū(1′)u(1)
1

(p′1− p1)2−m2
σ

ū(2′)u(2),

V(2)
ω = −g2

ω ū(1′)γµu(1)
gµν − (p′µ1 − pµ

1 )(p′ν2 − pν
2)/m2

ω
(p′1− p1)2−m2

ω
ū(2′)γνu(2). (2.2)
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Note that for simplicity we take only pure vector exchange for theω meson. This can be justified by
looking at a comparison of different models for the vector-meson exchange in Erkelenz’s paper[2].
Realistic models favour no, or only very small tensor coupling for theω meson.

For the Pauli-Villars particles, the same basic forms for the second-order matrix elements are
used with one difference: The amplitudes have opposite sign. This sign difference is of course the
reason why the Pauli-Villars bosons provide regularization of the potentials.

3. Static potentials

In the static and non-relativistic approximation, defined here by replacing the Dirac spinors
by their large components, taking the nucleons on-mass-shell, and replacing their energies in the
Dirac spinors by their masses, the amplitudes turn out to be

Ṽσ (qqq) = −
g2

σ
qqq2 +m2

σ
, Ṽω(qqq) =

g2
ω

qqq2 +m2
ω

. (3.1)

We used the Dirac equations for the spinors to remove the trensor term in the vector-meson propa-
gator Eq. (2.2):

ū(ppp′)γµ (p′− p)µu(ppp) = ū(ppp′)(mN −mN)u(ppp) = 0, (3.2)

The potentials in configuration space are given by the Fourier transforms of the expressions
Eq. (3.1):

Vσ (r) = −
g2

σ
4π

e−mσ r

r
, Vω(r) =

g2
ω

4π
e−mω r

r
. (3.3)

wherer = |rrr|.

4. Pauli-Villars regularization

In the Pauli-Villars regularization prescription one introduces fictitious heavy particles in the
Lagrangean density. Then the regularized interaction Lagrangean density is given by1

Lint = gσ ψ̄ψσ + igω ψ̄γµψωµ + igσ ψ̄ψη +gω ψ̄γµψθ µ , (4.1)

whereη and θ µ are the Pauli-Villars fields with large massesΛσ and Λω , respectively. Note
that we couple the Pauli-Villars bosons with the same strength as the physical bosons but with an
additional factori, which translates in second order into a relative minus signof the amplitudes.

This introduction of Pauli-Villars fields in the Lagrangeanresults in making the following
replacement for the meson propagators in Eq. (3.1):

1
qqq2 +m2 −→

1
qqq2 +m2 −

1
qqq2 + Λ2 . (4.2)

1Note that we include only one Pauli-Villars field for either meson. This is sufficient for cutting off the kernels
in momentum space if the effective interaction is obtained by taking matrix elements between on-mass-shell nucleons.
Otherwise, e.g. if one uses the Bethe-Salpeter equation, more Pauli-Villars fields are needed[7]
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Table 1: Values for the masses and coupling constants. They are chosen such that the deuteron binding
energyEB and the scattering lengthat are well reproduced. These values are similar to those proposed in [6].

Parameter (units) present model present model, no PV Malfliet-Tjon model [3]

EB(MeV) -2.224575 -3.36772 -2.27203

at (fm) 5.4151 4.58658 5.4739

g2
σ/4π 6.31 6.31 3.22749

g2
ω/4π 18.617 18.617 7.40758

mσ (MeV/c2) 400 400 306.8

mω (MeV/c2) 782.7 782.7 613.6

Λσ (MeV/c2) 1000 ∞ ∞
(Λω (MeV/c2) 1500 ∞ ∞

5. Solving the Schrödinger equation and fixing the parameters

The two-body S-wave Schrödinger equation for the reduced wave functionu0(r) = rψ0(r),
subject to the boundary conditionu0(0) = 0,

[

−
h̄2

2mred

d2

dr2 +V(r)

]

u(r) = E u(r), with mred =
mpmn

mp+mn
= 938.92 MeV/c2 ≈ mN, (5.1)

is solved numerically.
We use the existing data on the recommendedσ -meson mass, the experimentalω-meson

mass, the deuteron binding energy, and the triplet scattering length to fix the parameters. For
the Pauli-Villars particles we use the mass values (cut off values)Λσ = 1000 MeV/c2 andΛω =

1500 MeV/c2, which are reasonable values for these cut offs, although they are somewhat smaller
than usual. We did not vary them, because the model proposed here is simply not realistic enough
to warrant much effort in this direction. Yet, we wanted thismodel to produce a reasonable S-wave
deuteron wave function. The values of the parameters we found are given in Table 1.

The potential is depicted in Fig. 1 together with the simple Malfliet-Tjon potential MT III [3].
It is clear that the present model has stronger attraction atintermediate range and stronger repulsion
at short range than the Malfliet-Tjon potential. This difference can be expected to show up in the
bound-state wave function at intermediate range.

As a characteristic quantity that measures the quality of the wave function nonlocally, we
calculated the mean square radius defined by [8]

〈r2〉 :=
1
4

∫ ∞

0
dr r 2u2

0(r). (5.2)

We find a value for the root-mean-squared radius
√

〈r2〉 = 1.95015 fm close to Malfliet-Tjon’s
value

√

〈r2〉 = 1.97625 fm. This is also in accordance with other results for the deuteron root
mean square radius [8]. The triplet scattering lengthat is obtained from the solutionu0(r) of the
Schrödinger equation Eq. (5.1) corresponding toE = 0, see Fig. 2. We find the valueat = 5.421 fm,
compared to the experimental value of 5.432 fm [9].

We checked the importance of the Pauli-Villars bosons in thestatic approximation, where they
are not needed for convergence. In Table 1 we give the values of the energy and the scattering
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Figure 1: The present potential and wave functions with and without Pauli-Villars regularization compared
with the Malfliet-Tjon potential [3]. The parameters are given in Table 1.

length also in the situation that these bosons are omitted. Clearly, the values of the bound-state
energy,−3.368 MeV, compared to−2.2246 MeV, and 4.587 fm compared to 5.421 fm, are quite
reasonable, although of course far outside the error boundsof the experimental data.
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Figure 2: Wave functions at energyE = 0 for the present model with and without Pauli-Villars regulariza-
tion included in the potential. The scattering length is determined by a linear fit to the wave function at large
r.

6. Form Factor

As we make no difference between neutrons and protons in our simple benchmark model, we
calculate the body form factor of the bound state only. For the S-wave bound state found here, it is
given in terms of the normalized wave function by the well-known formula

F(q) =
∫ ∞

0
dr j0(qr)u2

0(r). (6.1)
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The normalization ofu0 guaranteesF(0) = 1. The resulting form factor for the present model is
depicted in Fig. 2, which at smallq behaves as

F(q) ∼ 1−
q2

6

∫ ∞

0
dr r 2 u2(r) = 1−4〈r2〉

q2

6
. (6.2)

(Note the factor 4 that comes from the factor 1/4 in the definition of〈r2〉, Eq. (5.2).)
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Figure 3: The form factor in the present model including Pauli-Villars regularization. The right-hand panel
shows the behaviour at small values ofq2. The form factor for the Malfliet-Tjon deuteron is indistinguishable
on this scale.

7. Momentum-Space Calculations

In order to facilitate the comparison of our model with calculations performed in momentum
space, we transformed the Schrödinger equation to momentumspace and solved it for the energy
and the wave function of the bound state. The momentum-spacewave functionω0(p) is shown in
Fig. 4. On this scale, we cannot see the difference between the Malfliet-Tjon wave function and
the one obtained with the present model. Looking at Fig. 1 we see that in coordinate space the two
models differ most below a few fm, so we may expect the momentum-space wave functions to be
different at momenta around 200 MeV/c, which turns out to be true, as Fig. 4 shows.

For small values of the momenta the momentum-space wave function is dominated by the
asymptotic behaviour of the coordinate-space wave function, namelyψ0(r) ∼ aexp(−αr). The
corresponding behaviour in momentum space isω0(p) ∼ A/(α2 + p2). The latter is plotted in
Fig. 5.

8. Relativistic Kinetic Energy

The simplest modification of the static, non-relativisiticmodel replaces the kinetic-energy op-

eratorppp2/mN by the operator 2
√

ppp2 +m2
N−2mN. It is well known that this replacement effectively

decreases the kinetic energy and consequently lowers the energy of the bound state(s) if the poten-
tial remains the same. This is indeed what we find. The eigenvalue of the Hamiltonian drops to
−2.73414 MeV.
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Figure 4: The wave functionω0(p) in momentum space for the present model including Pauli-Villars
regularization. The right-hand panel shows the wave function at small momenta, together with the pole part
of the wave function. The wave function for the Malfliet-Tjondeuteron is indistinguishable on this scale.
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Figure 5: The momentum-space wave functionω0(p) for the present model including Pauli-Villars regu-
larization and relativistic kinetic-energy operator. Also shown is the pole part. The right-hand panel shows a
comparison of the the momentum-space wave functions for thecase where the non-relativistic kinetic-energy
operator is used and the one where the relativistic operatoris used.

In Fig. 6 we show again the form factor for the Walecka-type model, but now together with
the one where the relativistic kinetic energy is used. The differences between the two is small, but
can be seen most clearly in the semi-log plot.

9. Summary

We propose a simple model for a two-nucleon system that is based upon a fully covariant La-
grangean, regulated using Pauli-Villars bosons. In the static approximation the bound-state energy
is equal to the deuteron energy and its wave function is closeto the deuteron S-wave function found
in realistic models. This model can be used to compare non-static interactions, i.e., taking into ac-
count the energy dependence of the two-body interaction, and relativistic calculations in different
forms of dynamics, based on boson-exchange field-theoretical interactions.

Using this model one may study the bound-state body form factor. Looking at the differences
between the form factors obtained using the present Walecka-type model and the Malfliet-Tjon
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Figure 6: A comparison of the form factors obtained for the present model including Pauli-Villars regular-
ization with the relativistic kinetic-energy operator andthe non-relativistic one. The right-hand panel shows
the form-factors in semi-log representation

potential, both with non-relativistic kinetic-energy operators, and the same potential combined
with the relativistic kinetic energy, we see that the differences are very small.

The simplicity of the model precludes an investigation of deuteron properties that are tied to
its D-wave, for instance the quadrupole moment and the quadrupole form factor. Moreover, by
limiting the exchange to neutral mesons, some meson-exchange effects do not occur. If it turns
out that benchmark calculations employing the present model produce the much desired basis for
a precise definition of ‘relativistic effects’, it will pay off to modify the model in order to make it
more realistic, in particular by including pion exchanges.

In relativistic approaches where the nucleons are allowed to go off the mass shell, modifica-
tions of the model are necessary.
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