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1. Introduction

If one studies the literature on treatments of nuclear systincluding relativity’ with ones
that are called ‘non-relativistic’, one notices that thexeno consensus about what these terms
mean. Therefore, one may try to find some common ground wHeresaarchers in few-body
systems can agree.

The present note is a first step in this direction. We definegrdragean that is simple enough
to derive a simple, effective nucleon-nucleon interactlmut realistic enough in the sense that this
interaction supports an S-wave bound state that closefnmeles the S-wave part of the deuteron.
The Lagrangean chosen is inspired by ¢he w-model, also known as the Walecka model [1]. The
present model means a drastic simplification, which of eodrges not do justice to the sophistica-
tion of realistic nucleon-nucleon interaction, found torteeded to achieve precise agreement with
the data.

In view of the necessity of regularization and the fact thadiiferent relativistic approaches
regularization may take different forms, part of the modelpmsed here is Pauli-Villars regular-
ization [2]. This amounts to introducing for every exchamhgpysical boson an unphysical one
that regulates the boson propagator in such a way that teeagtion defined by boson exchange
becomes well-behaved in momentum space.

Using this regulated Lagrangean and the boson-exchangeaddgetermine the effective in-
teraction between two nucleons, one can now use this ini@naim many ‘relativistic’ or ‘non-
relativistic’ formalisms. Below we apply this idea in thargilest possible context, namely to
write the interaction in the form of a static potential to ksed in the non-relativistic Schrodinger
equation. Our model is compared throughout to the Malfie otential [3].

In the benchmark proposed here, nucleon-nucleon interechased on effective-field theory
are not included, solely for the reason that they are limibddw energies by construction.

2. Lagrangean density of the Walecka model

The interaction Lagrangean densities in the Walecka madajigen by [1, 4, 5]
_ R fo, —
hNo = QoY -i”NNwZ|gw4’Vuwwu+ﬁ¢’Uy\/4’(0”wv—deu)- (2.1)

Here ¢ denotes the nucleon field of masy, o denotes a neutral scalar meson field of mass
m, and wH denotes a neutral vector meson field of mags -Zno describes the scalar meson
exchange andAyn. describes the vector meson exchange between the nucleonsiniplicity,
we takef, = 0.

Using the Feynman rules the second-order amplitudes ftarsmad vector exchange become,
respectively
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Note that for simplicity we take only pure vector exchangsglie co meson. This can be justified by
looking at a comparison of different models for the vect@sion exchange in Erkelenz’s paper[2].
Realistic models favour no, or only very small tensor caugplior thew meson.

For the Pauli-Villars particles, the same basic forms fershcond-order matrix elements are
used with one difference: The amplitudes have opposite Jigis sign difference is of course the
reason why the Pauli-Villars bosons provide regularizatbthe potentials.

3. Static potentials

In the static and non-relativistic approximation, definedehby replacing the Dirac spinors
by their large components, taking the nucleons on-madg-sinel replacing their energies in the
Dirac spinors by their masses, the amplitudes turn out to be

; 9 v 9
VG(q) = _q2 +Um2 ) Vw(Q) - q2 _:)mz :
g w

(3.1)

We used the Dirac equations for the spinors to remove thedrdarm in the vector-meson propa-
gator Eq. (2.2):
() vu (P’ — p)*u(p) = u(p’) (Mmy — my)u(p) =0, (3.2)
The potentials in configuration space are given by the Fotndmsforms of the expressions
Eq. (3.1):

2 ~A—Mgr 2 A—Myr
e e

V5 (r) = _ =
o(1) 4T r AT 1

(3.3)

wherer = |r|.

4. Pauli-Villars regularization

In the Pauli-Villars regularization prescription one oduces fictitious heavy particles in the
Lagrangean density. Then the regularized interactiondrsggan density is given by

Lint = o PYo +igu Py P +igePwn + 9oy Yok, (4.1)

wheren and 6# are the Pauli-Villars fields with large massAg and A, respectively. Note
that we couple the Pauli-Villars bosons with the same stfeag the physical bosons but with an
additional factoii, which translates in second order into a relative minus efghe amplitudes.

This introduction of Pauli-Villars fields in the Lagrangeeasults in making the following
replacement for the meson propagators in Eq. (3.1):

1 1 1
q2+rnz—>q2+rnz_q2+/\2

(4.2)

INote that we include only one Pauli-Villars field for eitheeson. This is sufficient for cutting off the kernels
in momentum space if the effective interaction is obtaingdaing matrix elements between on-mass-shell nucleons.
Otherwise, e.g. if one uses the Bethe-Salpeter equatiorg Rewli-Villars fields are needed[7]
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Table 1: Values for the masses and coupling constants. They arectisosh that the deuteron binding
energyEg and the scattering length are well reproduced. These values are similar to those gezpio [6].

Parameter (units) present mode| present model, no PY Malfliet-Tjon model [3]
Eg (MeV) -2.224575 -3.36772 -2.27203
a (fm) 5.4151 4.58658 5.4739
g3 /41T 6.31 6.31 3.22749
02,/AT 18.617 18.617 7.40758
my (MeV/c?) 400 400 306.8
my, (MeV/c?) 782.7 782.7 613.6
Ag (MeV/c?) 1000 o0 o0
(Ao (MeV/c?) 1500 o0 o0

5. Solving the Schrédinger equation and fixing the parametey

The two-body S-wave Schrddinger equation for the reducedeviianctionug(r) = rp(r),
subject to the boundary conditiag(0) = 0,

2 2
P & o violun=Eur), with meg= 2™

_— — 93892 MeV/c? ~ 5.1
zmeddrz + mp_|_n-h e / mNa ( )

is solved numerically.

We use the existing data on the recommendetheson mass, the experimentatmeson
mass, the deuteron binding energy, and the triplet saagtdength to fix the parameters. For
the Pauli-Villars particles we use the mass values (cut alfies)A\, = 1000 MeV/c? and/A\,, =
1500 MeV/c?, which are reasonable values for these cut offs, althougyrdne somewhat smaller
than usual. We did not vary them, because the model propaeddsimply not realistic enough
to warrant much effort in this direction. Yet, we wanted thisdel to produce a reasonable S-wave
deuteron wave function. The values of the parameters wedfaum given in Table 1.

The potential is depicted in Fig. 1 together with the simplalfliet-Tjon potential MT 111 [3].
Itis clear that the present model has stronger attractionierinediate range and stronger repulsion
at short range than the Malfliet-Tjon potential. This diffiece can be expected to show up in the
bound-state wave function at intermediate range.

As a characteristic quantity that measures the quality efwave function nonlocally, we
calculated the mean square radius defined by [8]

(r?) = %/:drrzug(r). (5.2)

We find a value for the root-mean-squared rad{;d@ = 1.95015 fm close to Malfliet-Tjon’s
value \/(r?) = 1.97625 fm. This is also in accordance with other results ferdauteron root
mean square radius [8]. The triplet scattering lerggtls obtained from the solutiong(r) of the
Schrédinger equation Eq. (5.1) corresponding te 0, see Fig. 2. We find the valae= 5.421 fm,
compared to the experimental value o432 fm [9].

We checked the importance of the Pauli-Villars bosons irstatc approximation, where they
are not needed for convergence. In Table 1 we give the valudggecenergy and the scattering
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Figure 1: The present potential and wave functions with and withoutiRéllars regularization compared
with the Malfliet-Tjon potential [3]. The parameters areagivin Table 1.

length also in the situation that these bosons are omittddarlg, the values of the bound-state
energy,—3.368 MeV, compared te-2.2246 MeV, and 687 fm compared to.821 fm, are quite
reasonable, although of course far outside the error boointth® experimental data.
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Figure 2: Wave functions at enerdy = 0 for the present model with and without Pauli-Villars regyiga-

tion included in the potential. The scattering length ised®tined by a linear fit to the wave function at large
r.

6. Form Factor

As we make no difference between neutrons and protons inmgptesbenchmark model, we
calculate the body form factor of the bound state only. FerShwave bound state found here, it is
given in terms of the normalized wave function by the welbkm formula

Flo) = [ ero(an (). (6.1)
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The normalization ofiy guarantee$ (0) = 1. The resulting form factor for the present model is
depicted in Fig. 2, which at smaijlbehaves as

F(q)wl—q—;/owdrrzuz(r):1—4<r2>q—62. (6.2)

(Note the factor 4 that comes from the factgéin the definition of(r?), Eq. (5.2).)
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Figure 3: The form factor in the present model including Pauli-Vélaegularization. The right-hand panel
shows the behaviour at small valuesiéf The form factor for the Malfliet-Tjon deuteron is indistinighable
on this scale.

7. Momentum-Space Calculations

In order to facilitate the comparison of our model with cétions performed in momentum
space, we transformed the Schrddinger equation to momespace and solved it for the energy
and the wave function of the bound state. The momentum-space functionwy(p) is shown in
Fig. 4. On this scale, we cannot see the difference betweeM#ifliet-Tjon wave function and
the one obtained with the present model. Looking at Fig. leeetisat in coordinate space the two
models differ most below a few fm, so we may expect the monmfipace wave functions to be
different at momenta around 200 Meayivhich turns out to be true, as Fig. 4 shows.

For small values of the momenta the momentum-space wavédidans dominated by the
asymptotic behaviour of the coordinate-space wave functi@amelyyo(r) ~ aexp(—ar). The
corresponding behaviour in momentum spaceuiép) ~ A/(a? + p?). The latter is plotted in
Fig. 5.

8. Relativistic Kinetic Energy

The simplest modification of the static, non-relativisitiodel replaces the kinetic-energy op-
eratorp?/my by the operator % p?+ mﬁl —2my. Itis well known that this replacement effectively
decreases the kinetic energy and consequently lowers #ngyeof the bound state(s) if the poten-
tial remains the same. This is indeed what we find. The eideewef the Hamiltonian drops to
—2.73414 MeV.
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Figure 4: The wave functiorup(p) in momentum space for the present model including Paulahgl
regularization. The right-hand panel shows the wave foncit small momenta, together with the pole part
of the wave function. The wave function for the Malfliet-Tjdauteron is indistinguishable on this scale.
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Figure 5: The momentum-space wave functiap(p) for the present model including Pauli-Villars regu-
larization and relativistic kinetic-energy operator. &\shown is the pole part. The right-hand panel shows a
comparison of the the momentum-space wave functions farake where the non-relativistic kinetic-energy
operator is used and the one where the relativistic opeisatsred.

In Fig. 6 we show again the form factor for the Walecka-typededpbut now together with
the one where the relativistic kinetic energy is used. Tiferdinces between the two is small, but
can be seen most clearly in the semi-log plot.

9. Summary

We propose a simple model for a two-nucleon system that isdbagon a fully covariant La-
grangean, regulated using Pauli-Villars bosons. In thicstpproximation the bound-state energy
is equal to the deuteron energy and its wave function is ¢toiee deuteron S-wave function found
in realistic models. This model can be used to compare radic$hteractions, i.e., taking into ac-
count the energy dependence of the two-body interactiath reativistic calculations in different
forms of dynamics, based on boson-exchange field-thealétieractions.

Using this model one may study the bound-state body fornofatboking at the differences
between the form factors obtained using the present Walggikamodel and the Malfliet-Tjon
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Figure 6: A comparison of the form factors obtained for the presentehoatiuding Pauli-Villars regular-
ization with the relativistic kinetic-energy operator ahé non-relativistic one. The right-hand panel shows
the form-factors in semi-log representation

potential, both with non-relativistic kinetic-energy oators, and the same potential combined
with the relativistic kinetic energy, we see that the differes are very small.

The simplicity of the model precludes an investigation afitdéeon properties that are tied to
its D-wave, for instance the quadrupole moment and the gpatk form factor. Moreover, by
limiting the exchange to neutral mesons, some meson-egeheffects do not occur. If it turns
out that benchmark calculations employing the present hqdeuce the much desired basis for
a precise definition of ‘relativistic effects’, it will payfioto modify the model in order to make it
more realistic, in particular by including pion exchanges.

In relativistic approaches where the nucleons are allowegbtoff the mass shell, modifica-
tions of the model are necessary.
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