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1. Introduction

QCD is a strongly coupled theory, where nonperturbative physics plays a crucial role. As such,
it is hard to handle analytically. A way out to investigate nonperturbative physics is model building
(e. g. by using holographic QCD models, effective models like the PNJL model or others). Another
extremely powerful tool is simulating QCD on a finite lattice. One can also attempt to quantize the
theory in the continuum and try to get as good as possible information out of this by a variety of
techniques. The latter philosophy shall also be employed in this work.

With lattice QCD, expectation values of gauge invariant operators can be computed without the
need of gauge fixing. The eventual numerical estimates for physical quantities like a particle’s mass
are in good agreement with experimental data. The merit of lattice QCD is that it can also provide
us with physical information in theories which do not appear in nature. Some famous examples are
QCD with a number of colors other than 3 or QCD without quarks (gluodynamics). In the latter
case, the physical spectrum supposedly exists of colorless pure glue states, the glueballs, see [1, 2]
and references therein.

We recall the classical SU(N) Yang-Mills action in d = 4 Euclidean space time,

SY M =
1
4

∫
d4xFa

µν Fa
µν . (1.1)

This action possesses an enormous local invariance w.r.t.

Aµ → AS
µ = S+∂µS+S+AµS S ∈ SU(N) , (1.2)

or in infinitesimal form

Aa
µ → Aa

µ +Dab
µ ωb , Dab

µ ≡ ∂µδ ab −g f abcAc
µ . (1.3)

We need to reduce this enormous overcounting of physically equivalent gauge configurations by
fixing a gauge. In principle we have a complete freedom to do so. Usually, one can pick a gauge
suitable for the problem under study. However, there is an important restriction, as one should be
assured that the eventual gauge fixed theory needs to be renormalizable. Not every gauge belongs
to the class of renormalizable gauges.

We shall now focus on one particular example of a renormalizable gauge, viz. the Landau
gauge, ∂µAµ = 0. This is a very popular gauge in the continuum, as it has many nice (quantum)
properties [3]. According to the Faddeev-Popov procedure, the gauge fixed action reads

SY M +Sg f =
∫

d4x
(

1
4

F2
µν +ba∂µAa

µ + ca∂µDab
µ cb

)
. (1.4)

This gauge fixed action no longer enjoys a local gauge invariance. However it gets replaced by the
equally powerful nilpotent BRST symmetry, s(SY M +Sg f ) = 0,

sAa
µ =−Dab

µ cb , sca =
g
2

f abccbcc , sca = ba , sba = 0 , s2 = 0 , (1.5)

which can be used to prove the perturbative renormalizability and perturbative unitarity of the
theory.

2



P
o
S
(
L
C
2
0
1
0
)
0
2
1

From unphysical gluon and ghost propagators to physical glueball propagators David Dudal

2. Gauge (Gribov) copies and the Gribov-Zwanziger (GZ) approach

During the Faddeev-Popov procedure, it is always tacitly assumed that there is one and only
one solution to the gauge fixing condition. Gribov was the first to realize this to be wrong and
constructed explicit examples in his seminal work [4]. If we take Aµ in the Landau gauge, ∂µAµ =

0, and consider an (infinitesimal) gauge transformation, A′
µ = Aµ +Dµω , then we quickly see that

∂µA′
µ = 0 if ∂µDµω = 0. Apparently, we encounter gauge copies if the Faddeev-Popov operator

Mab =−∂µDab
µ (2.1)

has zero modes. In order to exclude these copies from the path integral, Gribov proposed to restrict
the integration to the Gribov region Ω where ∂A = 0 and M > 0. This Ω corresponds to local
minima of the functional

∫
d4xA2

µ along the gauge orbits. This is already an improvement of the
original Faddeev-Popov quantization procedure. The question turns out to be how to implement
this kind of restriction to Ω in the continuum formulation? Gribov and later on Zwanziger [5]
worked out this problem and proved many properties of the region Ω, for example that every gauge
orbit passes through Ω [6]. We should however warn that Ω still contains copies, not related to zero
modes of the Faddeev-Popov operator [7].

After a lengthy analysis, Zwanziger was able to implement the restriction to the Gribov region
Ω to all orders by means of a local action, known as the Gribov-Zwanziger (GZ) action. The
eventual GZ partition function becomes [5]

ZFP =
∫
[dA][dc][dc][db][dφ][dφ][dω][dω]e−SGZ , (2.2)

with

SGZ = SY M +Sg f +Sφφωω +Sγ ,

Sφφωω =
∫

d4x
(

φac
µ ∂ν

(
∂νφac

µ +g f abmAb
νφmc

µ

)
−ωac

µ ∂ν

(
∂νωac

µ +g f abmAb
νωmc

µ

)
,

−g
(
∂νωac

µ
)

f abm (Dνc)b φmc
µ

)
Sγ = −γ2g

∫
d4x
(

f abcAa
µφbc

µ + f abcAa
µφbc

µ +
4
g

(
N2 −1

)
γ2
)
, (2.3)

where extra bosonic (φ , φ) and fermionic (ω , ω) fields were introduced. The parameter γ carries
the dimension of mass and must be self-consistently fixed to the nonzero solution of the following
gap equation

∂Evac

∂γ
= 0 , (2.4)

commonly known as the horizon condition [5], thereby giving γ ∼ ΛQCD, a typical example of
dimensional transmutation. It can be easily checked that for γ = 0 one recovers the Faddeev-Popov
theory. It is important to mention that this action (2.3) defines a renormalizable theory see [5, 8]
and references therein.

What about the BRST symmetry? One can naturally extend the BRST symmetry to the new
fields1

sφac
µ = ωac

µ , sωac
µ = 0 , sωac

µ = φac
µ , sφac

µ = 0 . (2.5)
1For γ = 0, we then obtain a trivial extension of the usual Faddeev-Popov gauge theory.
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The symmetry of the original action under the BRST transformation is softly broken

sSGZ = gγ2
∫

d4x
(

f abcAa
µωbc

µ − (Da
µmcm)(φbc

µ +φbc
µ )
)
. (2.6)

With softly we mean that it is proportional to the mass parameter γ2, thus it can be controlled at the
quantum level. Very recently, an equivalent formulation of the GZ theory was given in which case
the breaking is even converted into a linear breaking [9].

Apparently, treating gauge copies à la GZ leads to a loss of the BRST symmetry. As such, the
situation of how to define physical states also becomes less clear (see later).

3. Why studying propagators?

During the past decade, a lot of effort went into the investigation of the elementary gluon
and ghost propagators. One might wonder why so much study is devoted to these gauge variant
quantities, as these do not correspond to physically measurable quantities? Propagators are the
basic building blocks of quantum field theory: they do describe the propagation of the elementary,
albeit perhaps unphysical, degrees of freedom and they are the “simplest” objects to compute.
In any Feynman diagram-based approach to QCD, propagators appear. This reaches far beyond
perturbation theory, one needs only to think about Schwinger-Dyson, Bethe-Salpeter, sum rules,
. . . approaches to QCD, which are all nonperturbative in nature. In addition, since gluons are
confined at low energy, we might expect to see something nontrivial already at the level of the
propagators.

These propagators were also intensively studied using lattice simulations, in particular in the
Landau gauge. This gauge is very suitable to be simulated, as it corresponds to searching for the
minima of the functional

∫
d4xA2

µ along the gauge orbits. As such, one gets the “exact” propa-
gators and can compare those with analytical results in order to test the latter. If analytical and
lattice results are in good agreement, we may have a certain degree of confidence that the analyt-
ical approximation scheme gives reasonably good propagators, which can then be used in other
computations which depend heavily on knowledge of nonperturbative propagators.

In Figure 1, taken from [10], we show the lattice SU(3) Landau gauge gluon propagator and it
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Figure 1: Gluon propagator renormalized at µ = 3 GeV.
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is clear that there is no sign of a blow-up in the infrared, typically occurring when using perturbation
theory in the massless Faddeev-Popov scheme. This is indicative of nonperturbative effects, and
we shall try to motivate that these might be related to Gribov copies.

4. The Refined Gribov-Zwanziger (RGZ) approach

Using the action (2.3), it is readily verified that the tree level gluon propagator reads

D(p2) =
p2

p4 +λ 4 , (4.1)

which is indeed infrared suppressed, although it vanishes, in contradistinction with the lattice Fig-
ure 1. We have set here λ 4 = 2g2Nγ4. These effects persist upon including loop corrections [11].
For the ghost propagator G(p2), one can prove at any order [5] or compute explicitly [12] that by
invoking the gap equation (2.4)

p2G(p2)∼ 1
p2 , for p2 ∼ 0 , (4.2)

which again seems to be at odds with large volume lattice data [13].

Apparently, something is missing in the Gribov-Zwanziger formulation as standing. In order to
overcome this, in [14, 15] extra dynamical effects due to nonperturbative d = 2 condensates were
taken into account. We recall that the d = 2 condensate was popularized in the last decennium,
thanks to works like [16, 17, 18]. As a result of the analysis, one finds a gluon propagator of the
form [14, 15]

D(p2) =
p2 +M2

p4 +(m2 +M2)p2 +M2m2 +2g2Nγ4 , (4.3)

whereby m2 and M2 are mass scales corresponding to condensates, in particular

m2 ∼ ⟨A2⟩ , M2 ∼ ⟨φφ −ωω⟩ . (4.4)

We observe that D(p2) is still infrared suppressed, but D(0) ̸= 0 thanks to the presence of M2.
Hence, the gluon propagator lattice data is already qualitatively reproduced. For the ghost, one
finds [14, 15] G(p2)∼ 1

p2 for p2 ∼ 0, again consistent with lattice data.

Having found a reasonable qualitative agreement, one might wonder whether the lattice data
for the gluon could also be quantitatively fitted with a propagator of the form (4.3). This was tested
in [10]. The fit with m2 = 0 did not work out well, indicating that ⟨A2⟩ is of importance. The
following continuum extrapolated values were reported

M2 = 2.15±0.13 GeV2 , m2 =−1.81±0.14 GeV2 , 2g2Nγ4 = 4.16±0.38 GeV4 , (4.5)

leading to the fits displayed in Figure 2 for the gluon propagator and its form factor. We see that
the fit works out well up to p ∼ 1.5GeV. As a byproduct of this analysis, an estimate for the d = 2
gluon condensate was obtained,

⟨g2A2⟩µ=10GeV ≈ 3GeV2 , (4.6)
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Figure 2: Fit to the lattice gluon propagator (left) and form factor (right).

which is in the same ballpark as other, rather independent, approaches, see [10] for references.

It is apparent that the RGZ framework seems to be able to describe quite well the nonperturba-
tive (gluon) propagator. One is thus lead to believe that RGZ can be a good starting point to study
nonperturbative aspects of Landau gauge QCD. Future work should be devoted to try to compute
the scales in D(p2) in a clean analytical fashion using an effective potential approach. Recently,
in [19] an even more general RGZ setting was proposed. We conclude this first part of our talk
by drawing attention to similarly good-looking results for the two basic propagators in other ap-
proaches obtained by solving Schwinger-Dyson equations, see some of the other proceedings and
[20, 21].

5. Glueballs in the (R)GZ approach and the concept of i-particles

There is however more to life than gluon and ghost propagators. As the latter are believed to
be unphysical, one should look what the physical degrees of freedom could be, such that these can
be described by the (R)GZ theory. Therefore, we need to look at glueball correlation functions.
The big question is how to proceed from the “simple” gluon/ghost to the “less simple” glueball?

It turns out to be useful to consider two sets of variables, being the old variables (gluons,
ghosts and extra GZ fields), which are useful for renormalization issues, and a set of new variables,
the so-called i-particles [22], useful for spectral issues.

Let us first introduce these i-particles. We notice that there are 2 complex (conjugate) gluon
“masses” in the propagator (4.3), given certain bounds on mass scales, which are for example
fulfilled by the numbers (4.5). A set of 2 cc masses immediately leads to a tree level gluon positivity
violation (which is also seen on the lattice), meaning that the gluon cannot be a physical excitation
[26]. One can believe this is reflective of gluon confinement [27]. We also observe that there is a
field mixing in the tree level RGZ action

∫
d4x

(
1
2

Aa
µ(−∂ 2δµν −∂µ∂ν)Aa

ν + φ̄ab
µ (−∂ 2)φab

µ + γ2 g f abcAa
µ(φbc

µ − φ̄bc
µ )+ba∂µAa

µ

)
. (5.1)
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These cc masses are a bit hidden in these variables; we shall also set m2 = 0 for the remainder of
this talk. By using a set of linear transformations [22], the foregoing tree level action can however
be recast in the following form∫

d4x

[
1
2

λ a
µ

(
−∂ 2 +

M2 − i
√

4λ 4 −M2

2

)
λ a

µ +
1
2

ηa
µ

(
−∂ 2 +

M2 + i
√

4λ 4 −M2

2

)
ηa

µ + rest

]
.

Clearly, the new fields λ a
µ and ηa

µ have cc masses. They contain the gluon fields, which are un-
avoidably mixed with the (R)GZ content due to γ ̸= 0. We call these novel fields the i-particles of
the (R)GZ theory. The question how to describe glueballs in the (R)GZ context is still unanswered.

A first potential pitfall is how to define a physical subspace without BRST invariance? These
i-particles are obviously unphysical, which can be called “confinement” if one is of a very optimist
nature. But gluon confinement is of course more. We should be able to define a physical subspace
of purely gluonic states (i.e. glueballs), which should not decay into unphysical gluons/ghosts/. . ..
It looks like we need a symmetry to define such a subspace, thereby expelling the unphysical stuff.
This smells like a BRST symmetry application, but the GZ action breaks BRST as we have seen
already. In [23], it was shown how to construct a local albeit not nilpotent BRST symmetry of an
equivalent version of the GZ theory, but it remains unclear if this symmetry is sufficiently strong to
define a physically sensible set of glueball operators.

A second pitfall concerns the renormalization of a suitable glueball operator. As a glueball
is a kind of bound state of gluons, we need a suitable (local) composite operator, whose quantum
numbers correspond to the glueball state under investigation. As glueballs are physical, we expect
gauge invariant composite operators2. Again, the loss of the quantum version of the BRST sym-
metry seems problematic. Nevertheless, in case of the scalar glueball, it was shown in [24] that a
renormalization group invariant extension of the classically gauge invariant operator F2

µν(x) can be
constructed in (R)GZ. As expected, there is operator-mixing into3

O = F2
µν + s(d = 4 operators)+ γ2(d = 2 operators)+EOM-terms . (5.2)

Notice that, unlike in usual QCD,

⟨O(x)O(y)⟩ ̸=
⟨

F2
µν(x)F

2
ρσ (y)

⟩
, (5.3)

the reason being the BRST breaking ∼ γ2. This means that the mixing terms do influence the
correlator.

How should a general glueball operator O(x) look like in the (R)GZ world? O(x) should be
renormalizable, and for γ = 0, we expect to find back the original QCD cohomology output, thus
something of the form

Oγ=0(x) = gauge invariant operator+ s(d = 4 operator)+EOM-terms . (5.4)

Hence, for γ ̸= 0, we seem to be driven to

Oγ ̸=0(x) = gauge invariant operator+ s(d = 4 operator)

+γ2(d = 2 operator)+EOM-terms . (5.5)
2Or more precisely, quantum BRST cohomology classes, if we have a nilpotent BRST operator.
3EOM-terms stand for terms proportional to the equations of motion.
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The discussion on renormalization of classically gauge invariant operators is most easily given in
the old variables. The story changes when we want to check whether the operator generates a
physical two-point function. In order to speak about a physical propagator ∆(p2) = ⟨O(p)O(−p)⟩,
D(p2) must have a decent spectral representation4,

∆(p2) =
Z

p2 +m2
∗
+
∫ ∞

τ0

ρ(t)
t + p2 dt , p2 ∈ C (5.6)

so that ∆(p2) displays a branch cut only along the negative axis, with positive discontinuity ρ(t),
given by

ρ(t) =
1

2πi
lim

ε→0+
[∆(−t − iε)−∆(−t + iε)] .

This positivity can be easily understood from the optical theorem since ρ is proportional to the
cross section, which ought to be positive. The m2

∗ > 0 correspond to physical particle masses,
while τ0 > 0 corresponds to the multiparticle-threshold.

As demonstrated in [22], the i-particles are very suited to derive the spectral representation of
e.g. the correlation function built with F2

µν . At lowest order, we can work in the quadratic tree level
(Abelian) approximation, in which case F2

µν , rewritten in i-particle field strengths, reads

o(x) =
1
2

f a
µν f a

µν = λ a
µνηa

µν +
1
2

λ a
µνλ a

µν +
1
2

ηa
µνηa

µν . (5.7)

A priori, it is unclear how to compute the spectral representation, as the Cutkosky cut rules are in
principle only intended for use with real masses in Minkowski space. This problem can neverthe-
less be handled, but discussing this here would lead us to far. Let it suffice to mention that a few
examples were worked out in [22].

For o1(x) = λ a
µνηa

µν , it turns out that

⟨o1(p)o1(−p)⟩=
∫ ∞

τ0

ρ(t)dt
t + p2 , with ρ(t)≥ 0 . (5.8)

This is good news, as this represents a physical spectral representation. On the contrary, o2(x) =
1/2λ a

µνλ a
µν +1/2ηa

µνηa
µν leads to

⟨o2(p)o2(−p)⟩=
∫

curve in C

ρ(t)dt
t + p2 + cc (5.9)

thereby displaying cuts in the complex plane. Unfortunately, this also means that the tree level
version of F2

µν itself, viz. f 2
µν = o1 +o2, leads to an unphysical correlator [22].

It would then seem that only taking λ a
µνηa

µν is a good choice, since

λ a
µνηa

µν = f 2
µν + rest , (5.10)

and it leads to a physical correlation function. However, this operator falls outside the class (5.5),
and it therefore seems to be doubtful to be renormalizable, i. e. controllable beyond the tree level.
In addition, we do not have any information yet on the spectral properties beyond tree level either.

4We work in Euclidean space.
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We are currently investigating an operator of the kind

f 2
µν + s(other operators)+ γ2(other operators) , (5.11)

restricted to the Abelian level. If the spectral properties would turn out to be OK, the form (5.11)
would allow to at least write down an extension of the operator to the quantum level. One can
then try to investigate its renormalization and, if possible, its higher order spectral properties. This
kind of operator (5.11) would also fit with the new BRST constructed in [23]. From the tree level
results, if they are physically decent, one can also already extract information on glueball masses,
perhaps along the lines of [25] where a GZ-like theory was studied in relationship with glueball-like
operators.

We conclude that it is apparently very hard to accommodate good renormalization and good
analyticity properties at the same time when it comes to the study of glueball operators. We believe
this is not only of relevance to work in the (R)GZ context, but to all people active in propagator
research: how can one go from the unphysical gluon/ghost propagators to a well-defined physical
subspace of glueball operators, which can be controlled at the quantum level. In addition, one
should also try to find reasonable estimates for the glueball masses [2]. This looks like a very
ambitious program, but we hope that it will stimulate a lot of new research in the coming years.
It would also be interesting to find out whether the difference between GZ and RGZ plays a role
when it comes to glueball properties. Also the issue of a BRST symmetry needs to be further
clarified, even in the Schwinger-Dyson context due to the potentially subtle role played by boundary
conditions [20, 28, 29].
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