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1. Introduction

The standard model of particles physics is commonly thought of as an effective theory valid
up to some energy scale Λe f f . We know that at most Λe f f < MP, where MP is the Planck mass,
(' 1019GeV ) since gravitational effects become relevant, and cannot be neglected at that scale. We
thus consider the standard model lagrangian as the effective low energy part of a more general and
unknown lagrangian describing the underlying theory. Even if it is not a parameter of the standard
model Lagrangian, Λe f f should be taken in consideration in our calculations. Namely, all typical
intrinsic momenta which are relevant for the description of any physical process should be less
or equal to Λe f f . At tree level, these momenta are defined by the typical kinematical variables of
the process, like

√
Q2 in Deep Inelastic Scattering (DIS). They are thus under complete control.

However, beyond tree level, one has to deal with intrinsic momenta in loop contributions, that may
be large. To adress the problem of loop calculations, we have to consider renormalization theory.
There are various renormalization types at hand. Among others we can cite [1]: the bare multiplica-
tive renormalization, the counterterms method and the BPHZ method. For the sake of simplicity,
we will be using the first one as we will be interested in the definition of the renormalized mass
alone.
To be able to handle divergent quantities, such as loop integrals, one has to pick up a regularization
scheme. Two regularization methods will be used in this study. The first one exhibits a very large
mass scale, denoted by ΛC. This mass scale is either a naïve cut-off in (Euclidean) four-momentum
space, or the mass of Pauli-Villars (PV) particles in its covariant version, the PV regularization
scheme. This explicit mass scale should be much larger then any typical energy, or momentum
scale relevant in the calculation of the theoretical physical amplitude. The second one, wich we
will focus on, is the Taylor-Lagrange regularization scheme (TLRS). This scheme, wich has been
developped recently [2, 3], is based on the Epstein-Glaser [4] procedure to define physical ampli-
tudes in terms of operator valued distributions (OPVD) acting on test functions. All amplitudes
are then completely finite from the start, and depend on an arbitrary, finite, dimensionless scale η2.
The connection of the Epstein-Glaser formalism with the BPHZ renormalization scheme has been
shown in Ref. [5]. The TLRS will be presented in more details in Sec. 2.

Using a naïve cut-off to regularize the bare amplitudes, the radiative corrections to the Higgs
mass immediately lead to a quadratic dependency of the regulated amplitudes on the cut-off scale
ΛC. The (square of the) physical mass, MH , defined at the pole of the two-body Green’s function,
can be schematically written as

M2
H = M2

0 +b Λ
2
C + . . . , (1.1)

where M0 is the bare mass of the Higgs particle, and b is a combination of the top quark, W,Z
bosons and Higgs masses. The so-called fine-tuning problem arises from the requirement that ΛC

should be much larger than any typical energy scale relevant for the description of the theoretical
physical amplitude but still smaller than Λe f f . If one believes MH to be about a few hundreds of
GeV, a large cancellation between M2

0 and bΛ2
C should be enforced by hand, hence the name fine-

tuning.
However, when using the TLRS, the situation is quite different. Indeed, as the TLRS yields com-
pletely finite amplitudes no such problem appears. To show how this work in practice,we will, in
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section 3, first calculate the radiative corrections to the Higgs mass to the first loop order using
alternatively a sharp cut-off procedure and the TLRS and then compare and discuss both results.

2. The Taylor-Lagrange renormalization scheme

This scheme is based on the observation that any quantum field theory is an OPVD [6]. This
has been known for a long time. However, its full significance for practical calculations was not
fully recognized until recently [2, 3, 4, 5, 8].

As any distribution, quantum fields should be defined by their application on test functions,
denoted by ρ , with well identified mathematical properties [9]. In flat space, the physical field ϕ(x)
is thus defined by [2]

ϕ(x)≡
∫

dDyφ(y)ρ(x− y) , (2.1)

in D dimensions. If we denote by f the Fourier transform of the test function, we can further write
ϕ(x) in terms of creation and destruction operators, leading to

ϕ(x)=
∫ dD−1p

(2π)D−1

f (ε2
p,p2)

2εp

[
a†

peip.x +ape−ip.x] , (2.2)

with ε2
p = p2 +m2.

From this decomposition, it is apparent that test functions should be attached to each fermion
and boson fields. Each propagator being the contraction of two fields should be proportional to f 2.
In order to have a dimensionless argument for f , we shall introduce an arbitrary scale Λ to measure
all momenta. Λ can be any of the masses of the constituents. To deal with massless theories,
we shall consider some a-priori arbitrary value. The final expression of any amplitude should be
independent of Λ.

As recalled in Ref. [3], the test function f should have three important properties:
i) the physical field ϕ(x) in (2.1) should be independent of the choice of the test function ρ .

This may be achieved if f , the Fourier transform of ρ , is chosen among the partitions of unity (PU)
(see [3] for more details on PU’s). It is a function of finite support which is 1 everywhere except at
the boundaries. This choice is also necessary in order to satisfy Poincaré invariance. This is due to
the fact that if f is a PU, any power of f is also a PU. In the limit where the test function goes to 1
over the whole space, we then have f n→ f and Poincaré invariance is thus recovered.

ii) In order to be able to treat in a generic way singular distributions of any type, the test
function is chosen as a super regular test function (SRTF). It is a function of finite extension - or
finite support - vanishing, as well as all its derivatives, at its boundaries, in the UV and in the IR
domains.

iii) The boundary conditions of the test function - which in this study is assumed to depend
on a one dimensional variable X - should embody a scale invariance inherent, in the UV domain
for instance, to the limit X → ∞ since in this limit η2X also goes to ∞, where η2 is an arbitrary
dimensionless scale. This can be done by considering a running boundary condition for the test
function, i.e. a boundary condition which depends on the variable X according to

f (X ≥ H(X)) = 0 for H(X)≡ η
2Xg(X) . (2.3)
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This condition defines a maximal value, Xmax, with f (Xmax) = 0. In order to extend the test function
to 1 over the whole space, we shall consider a set of functions g(X), denoted by gα(X), where by
construction α is a real positive number smaller than 1. A typical example of gα(X) is given in
Ref. [3], where it is shown that in the limit α → 1−, with η2 > 1, the running support of the
PU test function then stretches over the whole integration domain, Xmax → ∞ and f → 1. In this
limit gα(X)→ 1−. This running condition is equivalent to having an ultra-soft cut-off [3], i.e.
an infinitesimal drop-off of the test function in the asymptotic limit, the rate of drop-off being
governed by the arbitrary scale η2. A similar scale invariance is also present in the IR domain,
when X → 0.

With these properties, the TLRS can be summarized as follows, first in the UV domain. Start-
ing from a general amplitude A written for simplicity in a one dimensional space as

A =
∫

∞

0
dX T >(X) f (X) , (2.4)

where T >(X) is a singular distribution, we apply the following general Lagrange formula to f (X),
after separating out an intrinsic scale a from the (running) dynamical variable X

f >(aX) =− X
akk!

∫
∞

a

dt
t

(a− t)k
∂

k+1
X

[
Xk f >(Xt)

]
. (2.5)

This Lagrange formula is valid for any order k, with k > 0, since f is chosen as a SRTF and it is
therefore equal to its Taylor remainder for any k. After integration by part in (2.4), and using (2.5),
we can thus express the amplitude A as

A =
∫

∞

0
dX T̃ >(X) f (X) , (2.6)

where T̃ >(X) is the so-called extension of the singular distribution T >(X). In the limit f → 1, it is
given by [2]

T̃ >(X)≡ (−X)k

akk!
∂

k+1
X

[
XT >(X)

]∫ η2

a

dt
t

(a− t)k . (2.7)

The value of k in (2.7) corresponds to the order of singularity of the original distribution T >(X) [2].
In practice, it can be chosen as the smallest integer, positive or null, which leads to a non singular
extension T̃ >(X). If in the absence of the test function T >(X) leads to a logarithmic divergence in
(2.4), k is 0. It is 1 if the divergence is quadratic. With this choice for k, the extension of T >(X) is
no longer singular due to the derivatives in (2.7), so that we can safely perform the limit f → 1 in
(2.6), and obtain

A =
∫

∞

0
dX T̃ >(X) , (2.8)

which is well defined but depends on the arbitrary dimensionless scale η2. This scale is the only
remnant of the presence of the test function. Note that we do not need to know the explicit form
of the test function in the derivation of the extended distribution T̃ >(X). We only rely on its
mathematical properties and on the running construction of the boundary conditions.

The extension of singular distributions in the IR domain can be done similarly [2, 3]. For
an homogeneous distribution in one dimension, with T <[X/t] = tk+1T <(X), the extension of the
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distribution in the IR domain is given by

T̃ <(X) = (−1)k
∂

k+1
X

[
Xk+1

k!
T <(X)ln(η̃X)

]
, (2.9)

with η̃ = η2− 1. The usual singular distributions in the IR domain are of the form T <(X) =
1/Xk+1. In that case T̃ <(X) reads

T̃ <(X) =
(−1)k

k!
∂

k+1
X ln(η̃X) , (2.10)

where the derivative should be understood in the sense of distributions. Doing this, the extension
T̃ <(X) is nothing else than the pseudo-function (Pf) of 1/Xk+1 [2, 3, 9]

T̃ <(X) = Pf
(

1
Xk+1

)
. (2.11)

The extension T̃ <(X) differs from the original distribution T <(X) only at the X = 0 singularity.

3. Application to the fine-tuning problem

After the electro-weak symmetry breaking as occured, the Higgs couples, among others, to
itself, to the leptons and to the gauge bosons. We then consider radiative corrections implying the
top quark, the W and Z bosons and, as we shall be working in the Feynman gauge, the Goldstone
bosons and the Fadeev-Popov ghosts as well. Each of this 1PI contributions gives a contribution to
the self-energy −iΣ(p2), where p is the four-momentum of the external particle, and we have

M2
H = M2

0 +Σ(M2
H) . (3.1)

When calcuted using a sharp cut-off procedure, the radiative corrections have divergent terms. We
shall concentrate on the terms proportional to Λ2

C as they are the ones leading to the fine-tuning
problem. The full calculation yields

M2
H = M2

0 +
3Λ2

C
8π2v2

[
M2

H +2M2
W +M2

Z−4m2
t
]
+ . . . , (3.2)

where mt ,MW,Z and MH are the masses of the top quark, W,Z and Higgs bosons respectively, and
v is the vacuum expectation value of the Higgs potential in the Standard Model. The dots include
logarithmic corrections in ΛC as well as contributions independent of ΛC in the large ΛC limit.
As mentionned before, when using a cut-off procedure, we should have, from consistency argu-
ments, M2

H < ΛC < Λe f f . We would also like ΛC to be close to Λe f f so that amplitudes will be
more likely to be independent of its precise value. The fine-tuning issue then appears when one
requires that M2

H should be defined without any large cancellation taking place in (3.2). The de-
gree of fine-tuning then depends explicitly on how large ΛC is. Furthermore, in the litterature, the
mathematical scale ΛC is often taken equal to the physical one Λe f f . Following this identification,
the problem gets worse because one would like, at the same time, Λe f f to be small, to reduce the
fine-tuning, and big to get a proper physical description. The relation (3.2) then becomes a test
ground for "new physics" theory, provided it predicts a value of M2

H and Λe f f , by evaluating the

5
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Figure 1: The Σ1b,H Higgs loop contribution

amount of fine-tuning it implies. The fine-tuning process then offers a way to supposedly safe and
time-lasting predictions on the onset of "new physics" beyond the standard model [10].

We now turn to the computation of the radiative corrections using the TLRS. As mentioned in
the previous section, all amplitudes turn out to be finite. We will illustrate it by detailling the
calculation of the simple Higgs loop contribution in Fig. 1. In Euclidean space one has

− iΣ1b,H =−3iM2
H

2v2

∫
∞

0

d4kE

(2π)4
1

k2
E +M2

H
f
(

k2
E

Λ2

)
, (3.3)

where k2
E is the square of the four-momentum k in Euclidean space. As already mentioned in Sec. 2,

Λ is an arbitrary momentum scale. The test function f provides the necessary (ultra-soft) cut-off in
the calculation of the integral.

After an evident change of variable, we get

Σ1b,H =
3M4

H

32π2v2

∫
∞

0
dX

X
X +1

f
(

M2
H

Λ2 X
)

(3.4)

=
3M4

H

32π2v2

∫
∞

0
dX
(

1− 1
X +1

)
f
(

M2
H

Λ2 X
)

.

The first term under the integral can be reduced to a pseudo-function, using (2.10). Indeed,
with Z = 1/X , we have ∫

∞

0
dX f (X) =

∫
∞

0

dZ
Z2 f

(
M2

H

Λ2
1
Z

)
(3.5)

=
∫

∞

0
dZ Pf

(
1

Z2

)
= − 1

Z

∣∣∣∣∞ = 0 .

The notation f (u)|a simply indicates that f (u) should be taken at the value u = a, the lower limit
of integration being taken care of by the definition of the pseudo-function. The self-energy thus
writes

Σ1b,H =− 3M4
H

32π2v2

∫
∞

0
dX

1
X +1

f
(

M2
H

Λ2 X
)

. (3.6)

The constant factor M2
H/Λ2 in the argument of the test function has no physical meaning since it

can be absorbed by a rescaling of the arbitrary dimensionless scale η2. This can be easily seen
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by applying the Lagrange formula (2.5) with the intrinsic scale a = M2
H/Λ2 and k = 0. It can thus

safely be removed 1.
We can now apply the Lagrange formula for k = 0. Using the boundary condition on the

support of the test function
Xt ≤ H(X) = η

2Xgα(X) , (3.7)

we finally get, in the limit f → 1

Σ1b,H = − 3M4
H

32π2v2

∫
∞

0
dX∂X

(
X

X +1

)∫
η2

1

dt
t

= − 3M4
H

32π2v2 ln
(
η

2) . (3.8)

It is easy to see that using a naïve cut-off on k2
E one would have obtained, in the large ΛC limit

Σ
C
1b,H =

3M2
H

32π2v2

[
Λ

2
C−M2

H ln
(

Λ2
C

M2
H

)]
. (3.9)

The quadratic and logarithmic divergent terms using a cut-off procedure are transmuted in
TLRS into contributions depending on the arbitrary dimensionless scale η2.

The other contributions to the radiative corrections to the Higgs mass can be calculated simi-
larly. The final correction to the bare mass can thus be written schematically as

M2
H = M2

0 + ā η
2 + b̄ ln[η2]+ cte . (3.10)

This should be compared with the corrections indicated in Eq. (3.2) when using a naïve cut-off.
The exact expression of ā is of no physical interest since physical observables should be RG-
independent of η2. They are completely finite and depend only on the masses of the top quark,
W,Z and Higgs bosons (and on the vacuum expectation value v of the Higgs field).
As it is, this equation has not much physical interest. It is just a definition of the bare mass as a
function of the physical mass, in the spirit of the renormalization theory. Away from the on mass
shell condition p2 = M2

H however, the constant term includes p2-dependent logarithmic corrections
which give rise to the well-known running of the mass. These corrections are identical in both
regularization schemes, as expected.
One can easily see that no fine-tuning problem arises when using TLRS as no other mass scales than
the constituent masses enter the calculation. However, amplitudes are function of the dimensionless
scale η2 in a similar fashion that dimensional regularized amplitudes depend on µ2

M2 [7]. The
fine-tuning problem using the BPHZ scheme as been analyzed long ago in [11] yelding similar
conclusions.

4. Conclusion

In this work we have calculated the radiative corrections to the Higgs mass to the first loop or-
der using alternatively a cut-off regularisation and the TLRS. Results appear to differ significantly.

1This could also be done more directly by choosing a particular value for Λ.
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The cut-off result exihibits a quadratic dependence in the cut- off scale ΛC, so that under certain
requirements it is the source of the fine-tuning issue. This issue get worsened when ΛC is identified
with Λe f f . In turn, when using the TLRS, the amplitudes are finite and, apart from the constituent
masses, they only exhibit a dependence on the arbitrary scale η , thus preventing any fine-tuning
problem from arising. A further analysis could be carried in the spirit of effective field theories by
limiting the stretching of the test function’s support to a finite value defined by ΛC. This will be
detailled in a future paper.
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