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1. Introduction

The AdS/CFT correspondence [1] currently stands out as a promising tool to gain insight into
the nonperturbative regime of QCD. The correspondence conjecturesthe existence of 5-dimensional
Anti-de Sitter gravitational theories whose weakly coupled limit is dual to the strongly coupled
regime of 4-dimensional (conformal) gauge theories. Obviously there is a big leap from the origi-
nal conjecture to the statement that QCD may have a gravitational dual: firstly,while QCD at high
(Euclidean) energies is certainly conformal, this corresponds to its weaklycoupled regime; and
secondly, the complexity of the QCD vacuum requires to include confinementand chiral symmetry
breaking in the picture. Even so, there is increasing evidence that very simple gravitational actions
are already able to capture the most relevant features of QCD.

This phenomenologically oriented approach usually relies on simple geometric configura-
tions like the one depicted in Figure 1, where the bulk 5-dimensional AdS space is limited by
4-dimensional boundary branes: the left-handed UV brane is where thegauge theory lives, while
the right-handed one (the IR brane) mimicks all the genuine nonperturbative physics: it breaks
conformal symmetry, sets a confinement scale, triggers spontaneous chiral symmetry breaking and
generates a hadronic spectrum. Phenomenological studies with such configurations have found re-
markable agreement with experimental results, especially for spin-1 particles created by the vector
Jµ = q̄γµq and axialJ5

µ = q̄γµγ5q currents [2].
However, the picture for spin-1 particles is not so simple in QCD. It is well known that vector

mesons can also be created by the tensor currentJµν = q̄σµνq, such that

〈0|Jµ |ρn(p,λ )〉 = fVnmVnε(λ )
µ ,

〈0|Jµν |ρn(p,λ )〉 = i f ⊥Vn(ε
(λ )
µ pν − ε(λ )

ν pµ) . (1.1)

Recall that the holographic recipe associates 5-dimensional fields with 4-dimensional currents, so
it is far from clear how the duplicity shown in the previous equation can be accomodated in the
holographic picture. Furthermore, as soon asJµν is considered, one also generates (even-parity)
spin-1 states

〈0|Jµν |bn(p,λ )〉 = i fBnεµνηρεη
(λ ) pρ . (1.2)

Therefore, in order to complete the picture for spin-1 mesons, not only vector but also tensor
currents have to be taken into account. Following the holographic recipe, this corresponds to
including 2-forms on the gravity side. However, the fact that 1−− is sensitive to 1-form and 2-
forms, and that both 1−− and 1+− states are created byJµν implies that strong correlations are
to be expected. This can be seen in the following set of 2-point Green’s functions, which in the
large-Nc limit can be expressed as

ΠVV(q2) =
∞

∑
n

f 2
Vn

−q2 +m2
Vn

,

Π+
TT(q2) =

∞

∑
n

f 2
Bn

−q2 +m2
Bn

,

Π−
TT(q2) =

∞

∑
n

ξ 2
n

f 2
Vn

−q2 +m2
Vn

,
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y = ǫ
y = ym

Figure 1: Geometric setting forhard-wall holographic models of QCD.

ΠVT(q2) =
∞

∑
n

ξn
f 2
VnmVn

−q2 +m2
Vn

, (1.3)

whereξn ≡ f⊥Vn/ fVn. The simultaneous analysis of the previous correlators leads to a series of
bootstrapping relations [3, 4] which will strongly constraint the resulting phenomenology.

2. A minimal action for 2-forms

As discussed in the previous section, we will consider a 5-dimensional action for both 1-forms
and 2-forms living in the configuration of Figure 1. For simplicity, we will consider the action

S= ∑
p=1,2

κi

∫

AdS5

e−Φ(y)Tr
[

dWp∧ ∗dWp +m2
pWp∧ ∗Wp

]

, (2.1)

with the generic metric

ds2 = gMNdxMdxN = e2A(y)(−dy2 +ηµνdxµdxν) , ε < y≤ ym . (2.2)

The 5-dimensional masses are given by the AdS/CFT recipem2
p = (∆− p)(∆ + p−d) andΦ(y)

is a dilaton field. For the time being we will let the masses unspecified and set a trivial Φ(y) = φ
dilaton background. In components, the previous action then reads

S1 = λ
∫

d5x
√

g Tr

[

−1
2

FMNFMN +m2VNVN
]

,

S2 = 2κ
∫

d5x
√

gTr

[

−1
2

∂LHMN∂ MHLN +
1
4

∂LHMN∂ LHMN − m2

4
HMNHMN

]

. (2.3)

Notice that we only consider the kinetic terms for each form and omit any interactions. This might
seem surprising, given thatΠVT seems to call for such an interaction. However, we will see later
on thatΠVT can be nonzero without interaction terms.

Following the holographic recipe, one would decompose the 5-dimensional fields in Kaluza-
Klein modes, such thatVN = (V5,Vµ) andHMN = (Hµ5,Hµν) and solve for the equations of motion.
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The solutions, which can be expressed in terms of Bessel functions [5],are then to be plugged back
into the original action. This way one ends up with a pure boundary action, whose expression when
A(y) = logy, i.e., in pure AdS metric, is given by the following expression:1

S=
∫

d4x

[

λ
2

{

1
y
Vµ(a)∂yV

(a)
µ

}

− κ
4

{

yHµν(a)(∂yH
(a)
µν −∂µH(a)

5ν +∂νH(a)
5µ )

}

]

∣

∣

∣

∣

∣

y0

ε

, (2.4)

The on-shell 5-dimensional fields, projected on the UV brane, are to be identified with the sources
of the gauge theory [6]. The previous action therefore allows us to compute 2-point correlators.

3. Transversely polarized mesons from 5-dimensions

A closer look at the previous action reveals that before actually computing any correlator
several issues have to be clarified. First, while it is natural to identifyVµ(ε) andHµν(ε) as the
sources of theJµ andJµν currents, respectively, the interpretation ofV5 andHµ5 fields is far from
clear: these by-products of the Kaluza-Klein reduction do not seem to correspond to any QCD
current. Furthermore, there is the unresolved issue that different currentsJµν andJµ can create the
same hadronic 1−− states, which seems to clash with the holographic recipe. And finally, it seems
puzzling that one can generate mixed correlators likeΠVT without mixing forms in the original
5-dimensional action.

In the following I will show that all these issues get resolved ifV5 andHµ5 are interpreted as
scalar and vector sources, respectively. To support this interpretation it is convenient to look at the
equations of motion forHµ5 andVµ :2

(

∂ 2
y −

1
y

∂y−�+
1−m2

H

y2

)

H5µ = 0 ,

(

∂ 2
y −

1
y

∂y−�

)

Vµ = 0 , (3.1)

and notice that indeed they are equivalent only ifmH = 1, which is precisely the mass assignment
predicted by the holographic recipe. This is not an accident but rather ageneral feature ofp-forms
in holographic settings. Consider for instance the equations of motion forV5 and a scalar fieldφ :

(

∂ 2
y −

3
y

∂y−�+
3+m2

V

y2

)

V5 = 0 ,

(

∂ 2
y −

3
y

∂y−�+
3
y2

)

φ = 0 ,

which again are equivalent providedmV = 0, again the value predicted by holography.
Based on the previous equations and according to Eq. (2.4), one is naturally led to identify

Hµ5 as the vector source that generatesΠVT andV5 as the scalar source inΠSV. This interpretation
can be shown to be consistent and provides natural explanations for observed patterns in QCD. For

1I include only terms quadratic in the fields, which are the relevant ones to compute 2-point functions at tree level.
2If one works out the equations of motion for 2-forms,Hµν andHµ5 are coupled. The decoupled expression for

Hµ5 is found only after using the consistency conditiond∗H = 0, which is satisfied by any massivep-form.
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instance, experimentally one finds thatΠSV = 0, which at least in the chiral and large-Nc limits
can be justified. According to the AdS/CFT correspondence, the fact that mV = 0 (which is linked
to vector current conservation) means thatVN is a 5-dimensional gauge field. Therefore,V5 can
actually be gauged away and indeedΠSV = 0. Likewise, the fact thatΠVT 6= 0 in QCD can be
understood holographically as due to the non-conservation of the tensorcurrent, in which caseHµ5

is no longer a gauge artifact but rather a physical field.

4. A comment on dilaton backgrounds

The interpretation of the residualV5 andHµ5 as scalar and vector fields in the previous Section
might seem trivial just by looking at their Lorentz indices. This is however not so straightforward
and the interpretation turns out to be a unique feature of pure AdS spaceswithout dilaton profiles.

The introduction of a dilaton field was motivated in Ref. [7] to force the spectrum of 1−−

mesons to display Regge trajectories, which can be achieved by choosingΦ(y) = cy2. If this were
a valid mechanism to incorporate linear confinement in the vector spectrum, it should also apply to
Hµ5. However, what one observes fromHµ5 is that the dilaton field factors out from its equation of
motion:

(�+m2e2A)H5ν −∂ν∂αH5α −∂y∂ αHαν = 0 . (4.1)

As mentioned before, this equation couplesHµ5 andHµν , and it is convenient to use the condition
d∗H = 0, which in components reads

∂ µHµ5 = 0 ,

∂ µHµν = e−A∂y(e
AH5ν) ,

to decoupleHµν . Notice however that the consistency condition does not introduce any dilaton
dependence because it only depends on the metric. Therefore, the presence of a dilaton field affects
Vµ but leavesHµ5 untouched. As a result, ifVµ and Hµ5 are to be identified as the transverse
and longitudinal sources for vector mesons, the presence of a dilaton is definitely ruled out. In
particular, this implies that models which display linear confinement through dilatonic backgrounds
do not provide a consistent description of vector mesons.

Finally, let me remark that the equation of motion forHµν doesdepend on the dilaton field,
but the choiceΦ(y) = cy2 does not lead to a spectrum with linear scaling.

5. Bootstrapping the infrared: implications for chiral symmetry breaking

In order to compute correlators the boundary conditions for the different fields have to be
specified. Conditions on the UV brane are dictated by the holographic recipe and define the 4-
dimensional sources. In contrast, conditions on the IR brane determine thenonperturbative aspects
of the theory and in principle there is a certain degree of freedom in choosing them.

For the vector fieldVµ it is common to choose Neuman boundary conditions

∂yV̂(q,ym) = 0 , (5.1)

5
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in order to prevent a zero mode in the vector channel. The point to stress here is that, once the
IR boundary condition forVµ is specified, it automatically determines the boundary conditions for
Hµ5 andHµν to be

∂yĤ(q,ym) = 0 ,

H̄(q,ym) = ρ(q) . (5.2)

The last condition turns out to be the only possibility to ensure single poles inΠVT, whereρ(q) is a
function whose behavior can be inferred from long and short distanceQCD constraints. Regardless
of the specific formρ(q) takes, the Dirichlet condition ensures thatΠVT has the same poles asΠVV,
in compliance with Eqs. (1.3). The first condition follows from the fact that ifHµ5 andVµ are to
describe the same states, not only the equation of motion but also the boundaryconditions should
be the same.

With the boundary conditions above, one can compute the following correlators:

ΠVV
µν (q) = i

∫

d4xeiq·x〈0|T{Vµ(x)V†
ν (0)}|0〉 = (qµqν −q2gµν)ΠVV(q2) ,

ΠVT
µ;νρ(q) = i

∫

d4xeiq·x〈0|T{Vµ(x)J†
νρ(0)}|0〉 = i (qρgµν −qνgµρ)ΠVT(q2) ,

ΠTT
µν;αβ (q) = i

∫

d4xeiq·x〈0|T{Jµν(x)J†
αβ (0)}|0〉 = Π−

TT(q2)Fµν;αβ
− (q) + Π+

TT(q2)Fµν;αβ
+ (q) ,

(5.3)

by functionally differentiating the action of Eq. (2.4). The results for the form factors are

ΠVV(q2) = −λ
[

log
q2

µ2 −π
Y0 (ζ )

J0(ζ )

]

, (5.4)

ΠVT(q2) =
κπ
4

y2
mρ(q)

[

Y1(ζ )− J1(ζ )Y0(ζ )

J0(ζ )

]

, (5.5)

Π+
TT −Π−

TT ≡ Π±
TT(q2) =

κ
4q2

[

2+ζ ρ2(q)
J2(ζ )−J0(ζ )

J1(ζ )

]

. (5.6)

The first thing to notice is the spectrum pattern that emerges. As anticipated, the boundary con-
ditions guarantee thatΠVV andΠVT both exchange 1−− mesons, as they should, and their masses
turn out to be located at the zeros ofJ0. The situation withΠTT is a bit more involved. The structure
of the action (2.4) provides direct access toΠ±

TT, and from there one can reconstructΠ−
TT andΠ+

TT.
Notice that the former can be fully reconstructed fromΠVV andΠVT alone, and thereforeΠ+

TT can
also be determined asΠ+

TT = Π±
TT + Π−

TT. A schematic picture of the predicted spectrums for the
different spin-1 states is shown in Figure 2. The striking feature is that thespectrum of 1+− states
is predicted to be twice as dense, with half the states degenerate with vectors and half the states
degenerate with axials. Although not much is known about these states beyond the first excitation
b1(1235), it is tantalizing thatmb1 = 1229±3 MeV whilema1 = 1230±40 MeV.

Another interesting thing to point out is that the resonance structure of bothΠVT andΠ±
TT is

proportional toρ(q). Since both correlators are order parameters of spontaneous chiral symmetry
breaking,ρ(q) is to be identified as the order parameter that triggersχSB. Notice thatχSB was
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a1 (1++)

b1 (1+−)

ρ (1−−)

Figure 2: Spectrum of spin-1 particles predicted by the holographic model. 1−− states lie at the zeros ofJ0,
while the masses for 1++ axial states correspond to the zeros ofJ1 [8].

never imposed in the model: it turned out to be induced by boundary conditions and it appeared nat-
urally due to consistency conditions between the correlators. The boundary termρ(q) is obviously
also responsible for the splitting between chiral partners depicted in Figure2.

Notice that the effects of chiral symmetry breaking are indeed subtle in the correlators under
study: nowhere a pion pole is allowed (by quantum numbers) to be exchanged, unlike in correlators
like ΠAA or ΠAP. The functionρ(q) is certainly related to the quark condensate, but it would be
interesting to show this relation in an explicit manner.

6. Some phenomenological applications

The correlators computed in Eq. (5.4) depend on a set of free parameters, namelyλ , κ, the
size of the fifth dimensionym andρ(q). λ andym can be fixed entirely fromΠVV, the former by
matching the high energy behavior ofΠVV to the QCD partonic logarithm, whileym is commonly
chosen such that the first vector meson matches theρ-meson mass. In contrast,κ andρ(q) have to
be determined by bootstrapping with the remaining correlators [5]. Once the parameters are fixed,
one can study the ensuing phenomenology.

Here I will comment on two phenomenological examples, namely then-dependence of the
parameterξn and the magnetic susceptibilityχ0.

The parameterξρ ≡ f⊥ρ / fρ is a fundamental quantity in the evaluation of the CKM matrix
element|Vub| and has been estimated by the lattice to beξρ = 0.72(2) [9]. In the large-Nc limit, one
can show that for large excitation numbersξn ∼ (−1)n2−1/2 [4]. Information is therefore available
for very small and very large excitations, but the previous results suggest thatξn ∼ 0.72 for all
excitations. The sign pattern follows from the fact thatΠVT is ultraviolet finite and cancellations
have to take place, but nothing more concrete than that can be inferred from 4-dimensional models.

The prediction from holography reads

ξn ≡
f⊥Vn

fVn
= −π2y2

mκρ(ζ0,n)J1(ζ0,n) , (6.1)

whereζ0,n are the zeros ofJ0. Interestingly, sinceJ1(ζ0,n) changes sign depending on whethern is
odd or even, the previous expression realizes the sign pattern conjectured in [4]. Additionally, the
values forξρ andξn>>0 above fix the boundary function to behave likeρ(q) = ρ1

√
qym.
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Another quantity of interest is the magnetic susceptibility of the quark condensate, which can
be defined as

lim
q2→0

ΠVT(q2) = −χ0〈ψ̄ψ〉 , (6.2)

and has an impact on the determination of the hadronic light-by-light contribution to the muon
(g− 2). Present values forχ0 span over the large window 2 GeV−2 . χ0 . 9 GeV−2, which
induces a potential(10−15)% systematic uncertainty in(g−2)HLBL [10]. Taking the low energy
limit of ΠVT, it is straightforward to obtain the holographic prediction:

κ
2

ymρ(0) = χ0〈ψ̄ψ〉 = −
∞

∑
n

f 2
Vn

mVn
ξn . (6.3)

Sinceρ(0) ∼ 0, it follows that our model predictsχ0 ∼ 0. In the last line aboveχ0 is split into
its resonance contributions. Because ofξn the different contributions will have opposite signs (and
eventually cancel out to yieldχ0 = 0). The surprising feature is that all resonances turn out to give
the same contribution, and therefore lowest meson dominance fails dramatically.

7. Conclusions

The study of spin-1 vector mesons is not restricted to the phenomenology ofvector currents.
Jµ only describes the so-called transverse 1−− mesons, whileJµν generates the longitudinal 1−−

mesons and, additionally, 1+− states. In the holographic language, this entails that one needs to
incorporate 1-form and 2-form fields at the same time on the gravity side. The strong interrelations
between them constraint both the space of allowed holographic models (the presence of dilaton
backgrounds is shown to lead to inconsistencies) and the phenomenology.In this paper I have
shown that a minimal model with only the kinetic term for 1-forms and 2-forms is already capable
of giving a complete picture of spin-1 fields, in which chiral symmetry breaking is not introduced
by hand but rather arises as a self-consistency requirement.
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