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We calculate the gluon structure function of a color dipole in a new approach evaluating the

matrix elements ofSU(2) gluon field operators separated along a direction close to the light cone.

As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone

Hamiltonian. With a mean momentum fraction of the gluons fixed to the "experimental value"

in a proton, the resulting gluon structure function for a dipole state with four links is compared

qualitatively to the NLOMRST2002 parameterization atQ2 = 1.5GeV2.
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In Euclidean lattice simulations, using the operator product expansion the lowest moments
of the meson and nucleon structure functions have been evaluated [1, 2,3, 4]. On the other side,
Loop-loop correlation functions of tilted Wegner-Wilson loops computed in Euclidean space [6, 5]
can be related to the gluon distribution function of a color dipole which consistsof a static quark
and antiquark pair connected by a Schwinger string. Alternatively, an approach based on light cone
dynamics [8, 7] refers to constituents moving along the light cone, as suggested by the picture of
Feynman scaling (as zeroth approximation). In the light cone approach thenon-perturbative QCD
vacuum structure is hard to achieve within the Fock representation of freefields acting on a trivial
vacuum. As we will demonstrate, the confining nontrivial QCD vacuum is essential to generate the
correct interaction of colored constituents moving along light like trajectories.

Therefore we have developed a near-light-cone (nlc) approach in which we exploit the lattice
formulation given forSU(2) gluodynamics, benefitting from simplifications emerging in the light
cone limit. In Ref. [9] we have constructed a ground state wave functionalof the nlc Hamiltonian
which is simpler than the ground state in equal-time theory. In Ref. [10] we have outlined the
formalism to determine the gluon distribution function of a color dipole with this ground state
wave functional. The present letter gives the main new results which one obtains following this
approach.

The gluon structure functiong(xB) is the probability that a gluon carries a fractionxB of the
longitudinal momentum of the fast moving hadronic target. In light cone coordinates, it is given by
the Fourier transform of the matrix element of the two-point operatorGlc(z−,~z⊥ ;0,~z⊥) of longitu-
dinally separated gluon field strength operators in a hadron state|h(p−,~0⊥)〉:

g(xB) =
1
xB

1
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∫ ∞
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with

Glc(z
−,~z⊥ ; 0,~z⊥) =

2

∑
k=1

Fa
−k(z

−,~z⊥)SA
ab(z

−,~z⊥ ; 0,~z⊥)Fb
−k(0,~z⊥) . (2)

The hadron|h(p−,~0⊥)〉 is centered in transversal configuration space at~b⊥ =~0⊥ and carries a
longitudinal momentump−. The index “c” indicates that the connected matrix element has to be
taken. The Schwinger lineSA

ab(z
−,~z⊥ ; 0,~z⊥) in the adjoint representation and running along a light

like path is inserted between the gluon field strength operatorsFb
−k(0,~z⊥) andFa

−k(z
−,~z⊥). The

importance of the Schwinger lines along the light cone has been demonstratede.g. in the loop-
loop correlation model where hadron-hadron scattering cross-sections are calculated from Wegner-
Wilson loop correlation functions [6]. In another language, the eikonal phases arising from the
strings along thex−- direction describe “final state” interaction effects which distinguish structure
functions from parton probabilities [11].

We are using near-light-cone coordinates which allow us to implement light front quantization
as a limit of equal time quantization. The definition of the temporal nlc coordinatex+ contains
an additional external parameterη which facilitates a smooth interpolation between equal time
quantization (η = 1 , x+ = x0) and light cone quantization (η = 0 , x+ = 1/2(x0 + x3)). The
definitions are:

x+ =
1
2

[

(

1+η2)x0 +
(

1−η2)x3
]

, x− =
[

x0−x3
]

.
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Theη → 0 limit can be interpreted as the infinite momentum frame limit in which the partons of
the color dipole move with infinite momentum. The use of nlc coordinates has the advantage that
no quantum constraint equations have to be solved.

In the SU(2) lattice formulation we have two transversal gauge fieldsA j ( j = 1,2) and one
longitudinal oneA− ( j =−) that are represented by the corresponding link matricesU j(~x). TheA+

component of the gauge field is set equal to zero. As a result one has theGauss-law constraining
the entire Hilbert space to the physical sector of gauge invariant states. The gluon dynamics is
determined by the Hamiltonian which has been derived in Ref. [9]. It represents the gluon energy
density on the lattice. The QCD coupling constant enters asλ = 4/g4 in theSU(2) case,

Heff,lat =
1

N−N2
⊥

1

a4
⊥

2√
λ ∑

~x

{

1
2 ∑

a
Πa

−(~x)2 +
1
2

λ Tr [1−U12(~x) ]

+∑
k,a

1
2

1
η̃2

[

Πa
k(~x)

2 + λ

(

Tr
[ σa

4i

(

U−k(~x)−U†
−k(~x)

)]

)2]






. (3)

Here,U12 are purely transversal plaquettes, andU−k are longitudinal-transversal plaquettes.
The Hamiltonian contains the chromo-electric field strength operatorsΠa

i (~x), which are canon-
ically conjugate to the linksUi(~x). They obey commutation relations which follow from the corre-
sponding continuum relations,

[Πa
i (~x),U j(~y)] = (σa/2) Ui(~x)δ~x,~y δi, j . (4)

The constant̃η in Eq. (3) is the product̃η = η ·ξ of the near-light-cone parameterη and an even-
tual anisotropy parameterξ = a−/a⊥, the ratio of lattice spacings in longitudinal and transverse
directions. If one choosesη = 1 and variesξ , one simulates an anisotropic equal time theory.
In the limit ξ → 0 one ends up with a system, which is contracted in the longitudinal direction.
Verlinde and Verlinde [12] and Arefeva [13] have advocated such a lattice to describe high en-
ergy scattering. A longitudinally contracted system means that even the minimal momenta become
high in longitudinal direction. The limitξ → 0 leads to the same physics as the light cone limit
η → 0 with isotropic lattice spacings in longitudinal and transverse directions. In both cases the nlc
Hamiltonian is dominated by the terms proportional to 1/η̃2 involving transverse chromo-electric
and chromo-magnetic fields. For a nlc-Hamiltonian formulation, the two-point operator in Eq. (2)
has to be replaced by

Glc(z
−,~z⊥ ; 0,~z⊥) =

1
2

2

∑
k=1

(

Fa
−k(z

−,~z⊥) SA
ab(z

−,~z⊥ ; 0,~z⊥)Πb
k(0,~z⊥)+

{

Fa
−k ↔ Πa

k

}

)

. (5)

In Ref. [9] we have determined a variational gluonic ground state wave functional|Ψ0〉 which
consists of a product of single-plaquette wave functionals with two variationally optimized param-
etersρ0 = ρ0(λ , η̃) andδ0 = δ0(λ , η̃),

|Ψ0〉 = Ψ0[U ] |0〉 =
√

NΨ ef [U ] |0〉 ,

f [U ] = ∑
~x

{

2

∑
k=1

ρ0Tr [U−k(~x) ]+δ0Tr [U12(~x) ]

}

.
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Figure 1: The generalized Wegner-Wilson loop generating the matrix element between the color dipole
states. Quarkq and antiquark ¯q are connected byn transversal links. Only one transversal direction is shown.
The insertion represents the gluonic two-point operator with an electric and a magnetic field operator.

NΨ is a normalization factor. Here, the state|0〉 represents the trivial ground state which is annihi-
lated by the field momentaΠa

k(~x) conjugate to the links,

Πa
k(~x) |0〉 = 0 and〈0| Πa

k(~x) = 0 for ∀~x,k,a. (6)

We have optimized this ansatz and extrapolated the parametersρ0,δ0 to the light coneη̃ → 0 (see
Ref. [9]).

Since the nlc Hamiltonian in Eq. (3) contains only gluon fields, we cannotderive a full
hadronic wave function from this Hamiltonian. We have to make a model taking care of the gluon
structure alone while treating the quarks schematically. Our model represents a dipole localized in
transversal configuration space at a fixed center of mass position~b⊥ =~0. The distance~d⊥ between
quark and antiquark is bridged by a Schwinger line along some pathC⊥ in the transversal plane.
The in and out dipole states form a Wegner-Wilson loop in the eikonal approximation as sketched
in Fig. 1.

The longitudinal lattice momenta must ben-fold (integer) multiples of 2π/N−, with 0≤ n≤
N−/2−1, since the longitudinal light cone momentum for an on shell particle is alwayspositive.
The momentump− of the target is chosen (in lattice units) as the largest momentum in order to
allow for the maximum resolution in the gluon distribution function [14]. The longitudinal lattice
gluon momentathen have the resolution

p− =
2π
N−

(
N−
2

−1) ,
∆pg

−
p−

=
2

N−−2
. (7)

In order to have a high resolution, the extension of the lattice in the longitudinaldirection has to be
very large.

We impose the quark dynamics of the color dipole externally. Since the total hadron longi-
tudinal momentum is given by the sum of the momenta of its constituents (quarks+gluons), the
typical mean gluon momentum is taken from experiment. For a rough qualitative comparison, we
use theMRST-parameterization [15] of the protonSU(3) gluon distribution function at the input
scaleQ2 ≈ π2/a2

⊥ = 1.5GeV2 corresponding toλ ≈ 10, and assign a mean momentum fraction
pS
− = 0.38p− to the gluon system of theSU(2) color dipole.

The gluon distribution function for a one-link dipolepg
−g1(pg

−; pS
−) with total gluonic mo-

mentumpS
− has been computed on lattices withN− = 20, 30, 50, and 100 sites in the longitudinal
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Figure 2: Gluon distribution functionpg
−g1(pg

− ; pS
− = 0.38p−) for a single transversal link,n = 1. The

dependence on the longitudinal lattice sizeN− is shown for a lattice couplingλ = 4/g4 = 10 (see Eq.(4)).
The average gluon momentum〈pg

−〉 = pS
− was input and adjusted to〈xB〉 p− = 0.38 p− (see text).

direction. Fig. 2 demonstrates the effect of increasing the number of longitudinal lattice sites, i.e.
approaching the infinite volume limit. Scaling forλ = 10 seems to be obeyed for longitudinal
lattice extensions larger thanN− = 50. Realistic lattice simulations need quite large longitudinal
lattice sizes. The smearing of the distribution function is due to the gluon dynamicsincorporated
in the Wegner-Wilson loop expectation value. Thus, the area law behavior of the Wegner-Wilson
loop yields a non-trivial gluon wave function which broadens the distribution.

For largerλ , i.e. smaller QCD gauge couplingg2, the peak in the one-link distribution function
becomes narrower. In the extreme weak coupling limit, when the link reduces toa single gluon,
the gluon distribution function becomes totally sharp. On the other hand, for strong coupling one
has a broad momentum distribution peaked aroundpS

−.

The one-link dipole gluon distribution is the basic building block from which the multiple
link dipole gluon distribution function of a hadron can be constructed. The actual hadronic state
arises from a superposition of multiple link configurations. Let the wiggly stringsSqq̄ (c.f. Fig. 1)
connecting the quark and antiquark have a fixed number of transversallinks since all the dipole
configurations with fixed transversal lengthn have the same energy. Then one rotates the hadron
in the transversal plane by summing over randomly chosen curvesC⊥, in order to project this state
on angular momentumJz = 0. From the random walk follows that forn-links , the hadron has an
average radius squared~R2

⊥ proportional ton: Hence, the area of the hadron scales with the number
of links:

〈

R2
⊥
〉

= na2
⊥/2 . (8)

Due to smallδ0 in the light cone limit, the ground state wave functional allows for ordinary strong
coupling methods. This implies especially that one needs incoming and outgoing states sharing the
same transversal links connecting the quark and antiquark. Therefore, the gluon distribution can
be obtained for a special string elongated along only one of the transversal axes (c.f. Fig. 1).

The computation of the n-link gluon distribution functiongn is done in analogy to the compu-

5
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Figure 3: Qualitative comparison of the gluon distribution functionxBgn(xB; pg
−) for n = 4 transversal

SU(2) links with theMRSTgluon distribution function of a proton atQ2 = 1.5 GeV2. The average gluon
momentum was taken as input for the lattice calculation on aN− = 1000 lattice at gauge couplingλ = 10.

tation of the single link gluon distribution. In strong coupling the total loop factorizes, therefore
then-link distribution function is given by the product of a splitting functionPn→n−1 multiplying
the gluon distribution function withn− 1 links. In the emerging recursion relation all possible
intermediate momenta of the substring are summed over:

gn
(

pg
−; pS

−
)

=
2π
N−

pS
−

∑
pS
−′=0

gn−1
(

pg
−; pS

−
′)Pn→n−1(pS

−, pS
−
′) (9)

The splitting functionPn→n−1(pS
−, pS

−
′) denotes the probability that a string withn transversal links

and total momentumpS
− splits into a string withn−1 transversal links and total momentumpS

−
′

and is given in Ref. [10]. The initial condition for the recursion relation Eq. (9) is given by the one-
link dipole functiong1(pg

−; pS
−). The computation is purely arithmetic for smallδ0, and we can use

a large longitudinal lattice withN− = 1000 lattice sites. If one increases the number of transversal
links, the gluons have access to a larger region in phase space due to the splitting functionPn→n−1

in Eq. (9). Therefore the total gluon momentum will be partitioned among more gluons. Hence, it
becomes more likely to find a gluon with a small fraction of the total momentum.

In Fig. 3, we show the theoretical gluon structure function for an = 4 SU(2) link dipole as a
function of the gluon fractional momentumxB = pg

−/p−. To have a rough qualitative comparison,
we also show theMRSTgluon distribution function atQ2 = 1.5GeV2 which is for real protons
andSU(3). As before, the first moment of the lattice gluon distribution function has beenfixed
in this figure to the value〈xB〉 = 0.38 atQ2 = 1.5GeV2. We choose four links to be consistent
with the size of a proton and the relation〈R2

⊥〉 = na2
⊥/2 and a transversal lattice spacing ofa⊥ ≈

0.65 fm. The lattice gluon distribution function for a color dipole shows a similar behavior as the
phenomenologicalMRST-gluon distribution function for a proton.

The model presented here also shows thatxBg(xB) for the gluon at smallxB becomes propor-
tional to the hadronic sizeR2

⊥. This coincides with the empirical soft Pomeron behavior of hadronic
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cross sections. To evolve the structure function with increasing resolutionQ2 and with decreasing
xB in Hamiltonian lattice QCD, one needs a more sophisticated ground state wave functional re-
specting scaling with the lattice spacing.
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