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1. Introduction

Hadronic wave functions encode important information on bound stateimgsinteraction
physics; in particular, they provide the amplitude for a composite hadronve taarks in a
given momentum state or, equivalently, at a certain space-time distancey ¢lerks obey non-
relativistic quantum mechanics and conserve particle number. While oerstadding and intu-
ition is based on wave functions, as a matter of principle the wave functionstae directly
measured experimentally. One must instead resort to form factors, dadtns, or momentum
distributions. Moreover, for light quark systems particle creation mayrpcdamanding a field-
theoretic framework where further complications arise. Relativistic invegiarquires that one
uses the conventional Bethe-Salpeter (BS) amplitudes with a fixed numtter gfiark field oper-
ators, a reminiscent of the approximated parton picture point of view, esiggtbby the light-cone
approaches [1]. Color gauge invariance requires additional incledithe link operators [2].

For the pion, the spontaneously broken chiral symmetry is a basic dynaimgcatient in
the determination of its nonperturbative quark structure. It appears @ipdttinent axial Ward-
Takahashi identities [3]. These important constraints are implemented iwvistlatiield-theoretic
chiral quark models, such as the Nambu-Jona-Lasinio (NJL) modet (feview see, e.g., [4]).
The regularization, introducing the physical cut-off, needs to be gilydfandled not to spoil the
relativistic, gauge, and chiral symmetries.

On the other hand, lattice QCD solves the bound state problem in a fundamwestalt is
thus possible to make a first-principle nonperturbative determination of thie fmactions, but
at the expense of breaking the continuum symmetries, such as the Lonearianice and, quite
often, chiral symmetry, due to the finite lattice spacing. The axial WardhEedta identities can be
exactly implemented on the discrete Euclidean lattice as shown by Ginspargiksat 8] (see
Ref. [6] for a recent practical implementation), enabling realistically smafi piasses.

In the present contribution we show the analysis of the pion wave fundtiomsthe quenched
lattice QCD [7] and make the comparison to various hadronic models. In spite @Ery dissim-
ilar appearance and nature of these approaches, we will provide lditions under which this
comparison may be undertaken. We also address in more detail the lighissaas with the help
of the transversity relations.

2. Bethe-Salpeter Amplitudes

The BS vertex or wave function of the pion is given by

X6 = =i [ dxe O[T {a0G(0)} |ma(p). @)

whereq(x) are spinor field operators carrying flavor and color, amdp)) is the pion state with
the Cartesian isospin indexand the on-shell four-momentum p? = m2. While chiral quark
model calculations are naturally formulated in the momentum space, the basitsabjguclidean
lattice calculations are the point-to-point correlation functions. Thesetitjearare gauge and
renormalization-group invariant at all Euclidean times, which basicallyespond to off-shell pro-
cesses. At large Euclidean times only the on-shell states contribute to th&tion functions, as
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well as the off-shell violations of the gauge invariance disappearrtingghe Fourier transforma-
tion we get (in the isospin limit afn, = my)

(O {a0)F(O)} 7a(@) = {*y6[¥p +8a + 10" G, W1, 22)
where the wave function#/,, a= P,A T, depend on the Lorentz-invariant variabliésx- g, and
g®> = mZ. The quantities¥, are vertex functions in the BS equation, and as such are finite and
undergox-independeninultiplicativerenormalization. Thus, the ratidg,(x)/%4(0) become cut-
off independent, as the cut-off is removed, which on the lattice maan$.

The definition of Eq. (2.2) is completely satisfactory for chiral quark modelQCD, how-
ever, it is only gauge-invariant in the fixed-point Fock-Schwingemgax'A, (x) = 0, where the
standard derivativeg)#, and the covariant derivativeB* = 0 +igAH, coincide. On the lattice
the gauge fixing has the problem of the Gribov copies, as there is no comgaleaie fixing. On the
other hand, Elizur's theorem prevents non-vanishing vacuum exjmectalues of gauge variant
operators in the physical Fock space.

Non-gauge invariant operators can be made gauge invariant by joirgngulith a link oper-
ator, however, as a result the path-dependence sets in. Furtheghiores carry momentum in the
pion and different gauge-invariant definitions yield different resudee (Ref. [8] for a discussion
on various possibilities). For definiteness, we choose a straight-line patimalertake amearing
procedure. This delocalization improves the signal-to-noise ratio for theureg hadron corre-
lators, as the interpolating operators have a larger overlap with the detated Local operators,
in contrast, do not take into account the spatial extension of the hadrdos.u3efulness of the
smearing process lies also in the fact that the overall thickness of the flexriuhe probe is con-
trolled by the number of the smearing steps. In addition, the method is compullgtsingple.
The resultingat link also reduces the high-energy fluctuations and the path dependecit¢hau
we deal with a coarse-grained wave function. The procedure natfiradky its counterpart in the
low-energy effective chiral quark models. In a previous work [7]dbenched lattice calculations
of the pion have been worked out along these lines. The quencheakapption contains all the
leadingN., and hence thqq, Fock state components. Thus we expect that quenched calculations
describe the largék. motivated models.

3. Transversity relations
The relativistically invariant BS amplitude has the representation
1 :
OT{a0)G(0)} |7a(@) = iyea | - darer -
X [-Wp(a, %) +@Wa(a,X?) —2ic* quxPr(a,x?)],  (3.1)

wherea is the Feynman parameter. As a matter of principle, all scalars su€h iasEq. (2.2) de-
pend on the kinematic variable$, x- g, andg?, thus we are free to choose any form of kinematics.

1The quenched lattice calculations also contain a piece subleadidg imhich is actually suppressed for heavy
quarks; pion loops are/N¢-suppressed, although not all of th&\k-contributions originate from the pion loops [9].
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In therest-framekinematics we haviy = 0 and(dp,q) = (my, 0), whencex’ = —x?, x-q =0, and
g? = m2. On the other hand, in the infinite-momentum-frame kinemdtigsy) = (/M2 + p2, p,),
with p, — co. Thus on the light-cone surface, = z, one has? = —x%, andx-q— 0.

The Lorentz invariance allows us to relate the rest-frame calculation to tis¥éneae-coordinate
dependence in the light-cone wave functions. Simply, by comparing EG3.a(2d (3.1) we find

1 -~ .
W, (2, x.q) = / daWa(a,x?)eax2a-1), (3.2)
0

We may identify the Feynman parametemwith the Bjorkenx-variable,xgj = a. Then, for the
chosen kinematicg*x~ = g-x = 0, we have§T(—r2,0) = [ dxg; W5 (xgj, —r?), where ET and
LC denote the equal-time, and light-cone wave functions, respectivelthelmrgument ofPET

one takes? = x?, the distance squared, while in the argumeri¥bf we need to use? = x2, the
transversalistance squared. Therefore

1
WET(_r2,0) :/O dgj Wi (g, )|, _, - (3.3)

That way the connection between the ET and LC wave functions has bedlished.

Although generating the autonomous connection between LC and ET wastéofis seems at
first glance hopeless [10], a similar transversity relation has recenttydesiticed for scalar parti-
cles. Another transversity property for the Generalized Parton Distrimi{@PDs) was suggested
for the nucleon [11] and the pion [12], allowing a frame-independefmitien of probability (un-
like the more conventional Breit-frame definition). In the case of the pioradse

1 d2 .
Po(D) = [ dxaix.b) = [ e Ry (<) = Pl (34)

whereq(x, b) is the off-forward diagonal GPD arig (t) is the pion form factor. In the phenomeno-
logically successful Vector Meson Dominance (VMD), whEyét) = M3 /(M3 —t), one gets

PET(r) = M2Ko(rMy)/(2m) ~ e ™1 /2. (3.5)

Besides these relations, it would also be useful to verify the ET-LC teagigy connection directly
on the lattice. While there exist transverse lattice calculations [13] (seddi4] review), their
focus is placed on the Distribution Amplitud®(a,0) = ¢ (o), leaving out thex; dependence.

4. Chiral Quark Modelsvs L attice

We evaluate the correlation function of Eq. (2.2) in a chiral quark moaeldfreview see,
e.g., [4]). Disregarding for the moment the regularization, an instructia to determine the
pion wave function in a chiral quark model is by exploiting the axial Warklafashi identity.

It relates the quark propagat@p), and the vertex function corresponding to the axial current,
JRA(x) = 2a(x)y* s Ta0(x), with the irreducible vertek 4 ®(p+ g, p):

ST S SO
S(p+0) o5 Tat V5 TaS(P) T = AR %P+, ). (4.1)

2Note that we keep only thggcomponents of the BS amplitude, thus we do not account for the possiklgence
of the higher Fock-state components, pertinent to the dynamical ndttive looost.
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Figure 1: The components of the rest-frame equal-time pion wave fomchormalized to unity at the
origin, Wa(r)/Wa(0), for S, A, andT channels, evaluated in the NJL modelMit= grqqfr = 300 MeV,
and compared to the quenched lattice data [7]. The displpgids of the lattice data are at; = 345 and
575 MeV, while the NJL model calculation includes also theecaf the physical pion mass.

In the NJL model, the spontaneous breaking of the chiral symmetry gemeratestituent quark
massM, given by the so-calledap equationAs the resultS(p) = 1/(p— M), such that

T2 H 2M
FX’a(p+q, p) = 5)’5 [Vu - ngn] 4.2)

The pole at? = 0 indicates the Goldstone boson nature of the pion. The pion wave function is
extracted from the pion pole as an unamputated vertex function,

: M .
Xc?(k) = m <an5Ta> ﬁa (4.3)

where the Goldberger-Treiman relation at the quark leygly = M/ f, can be read off. With the
Feynman trick, the result becomes particularly simple in the chiral tfnit m2 — 0, yielding

Wp(a,x?) = M [~2(2a — 1) + 0H 3y +M?] d2A(M, X),
Wa(a,X%) = M23y2A(M, X),
Wr(a,%?) = —20,:02A(M, ), (4.4)

where we have introduced the free scalar propagator in the coordpaate,s

4 ip-X /_x2
A(M,X):/ dp P _ MKy(Mv—x) (4.5)
(2m)* p? — M? 4112/ — X2
From the previous formulas we find (for; = 0) the relations

GrggNeM e Mr
Wp(r) =2Wr(r) = %Kl(Mr) o™ T (4.6)

 OmggMNe e Mr

Walr) = 212 Ko(Mr) reg rl/2’

whereKgy andK; are the modified Bessel functions and “reg” means a regulator. The &styenp
behavior ar — = is independent of the regulator and implies a longer tail inAtehannel than
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Figure 2. Axial equal-time holographic wave functions, normalizedunity at the origin, for the quark
massesn = 330 MeV (dashed black) and = 4 MeV (solid red), obtained via the transversity relationd a
compared to the lattice calculation withy, = 575 MeV (boxes) and 345 MeV (circles) [7].

in theP andT channels. The exponential fall-off of the pion wave functions is comndistg to

a power in r, with the probabilistic estimate in Eq. (3.5) wity = 2M, M being theconstituent

mass. At short distances Ax?, M?) ~ 1/x? the results are divergent demanding regularization.
The NJL model with the (twice subtracted) Pauli-Villars (PV) regularizatiopliag to an

observableA amounts to the replacemet — M? + A2, followed by the subtraction

LdA(N?)
dnZ -

Results of the calculation, shown already in [7], are given in Fig. 1. Asee& the agreement is

excellent. At the farthest lattice point= 0.6 fm, the ratior Wa(r)/Wp(r) approaches a constant.

The quantitative agreement of the NJL model with the data is not trivial. Ftarios, in

the Spectral Quark Model (SQM) [15] only qualitative matching is achieledhis approach the

regularization is introduced by replacing the misby the “spectral” mase, usinggmq = w/ fr

and integrating ovew with a suitable weighp(w), which depends on the vector and scalar meson

massesNly and Ms), and also on a specified contour in the complexlane. That way, for

instance, VMD of the pion form factor can be built in withg = 242 f2/N.. Form; = 0 we get

the results

Alreg= A(A? = 0) — A(A?) + A

4.7)

l v
T

We(r) _ Wi(r) _ _wgy2 Wa(r) — —wmyrj2 Myr
Wp(0) “Wr(0) ° 7 Wa0) < > “8

Again, W, is more extended thaHp andWr, due to the presence of an extra power.iin the case
of SQM we would get good fits of the lattice data fdy /2 = 50530), 520(20), 530(14) MeV for
the subsequent values wf; = 345, 475, 575 MeV. A simple quadratic extrapolatiomip to the
chiral limit yieldsMy /2 = 493(20) MeV, a too high value as comparedity = m, = 770 MeV.

5. Holographic wave functionsvs lattice

The transversity relations (3.3) can be used to deduce the ET wave fumfrtion the LC wave
functions. As we have shown, ET wave functions can be computed ditd&aic lattices upon a
suitable coarse graining of the gauge link operator. As an example, whadaiehe holographic
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wave functions inspired by the AdS/CFT correspondence and recentlglit in connection with
the LC wave functions [16] as a first approximation to QCD (for a revieevesg. [17]). The
basic idea was to relate the QCD-LC Hamiltonian by using the scaling relation éretéve two-
dimensional vectorg = \/X(1—x)b (valid for massless quarks) amdsumehat the interaction
also depends on this scaling variable. Further elaborated models with firitk masses are
introduced, assuming the replacemiefit— k2 +nm? [18]. However, by doing so it is not obvious
whethemn corresponds to the current or constituent mass of the quark. Foe#satr, masses=

4 MeV andm = 330 MeV are explored. A full discussion of models is carried out in [4$iere
the soft-wall with a positive dilaton background seems phenomenologicafemped. Actually,
besides the good quality of the mass spectiifig= 27o (n+ L+ S/2) with 4k2 = 2110 , the pion
arises as a massless mode (correspondimgtd. = S= 0). Unlike the chiral models, this is not
linked to the spontaneous breaking of the chiral symmetry, apparently mifiestsan the light-cone
dynamics. Thus, we identify the BS axial component with the holographie faction [16, 18]

WEC (b, ,x) = &\/x(l—x) exp [—sz(l—x)b2 _m .
’ NG 2 L 2k2x(1—x)
Calculations can be undertaken analytically for massless quarks. Follp¥8hgve fix the pion
weak decayrt” — ptv, and the neutral pion decag® — 2y, from the conditions

fr Ak B V3 B AATP

1 1 1
2 [TdxwiC(b PR S /ddzb Wb, x) = Y2 =
2\/ﬁ/0 X A(L’X)‘bL*OL 2\@ 16’ \/ﬁo X €L A(L7X) fr[ K

(5.1)

respectively, withf; = 92.4 MeV. This yieldsA? = 2/ = 0.2 andk = 471,/2/3f; = 950 MeV.
Using the transversity relation the ET (holographic) wave function reiadh¢ massless case,
m=0)
W' (r)
WET(0)

wherel(z) are the modified Bessel functions. Note that upon the use of the relsior
241 f2 /N, the smallr expansion reproduces the SQM result, Eq. (4.8), exactly. The asymptotic
behavior at large distances has the form

WET(y 33 (m 1

w%éo% - 8f3\§/2 <r2 AEN ﬁ(r_5)> e (5:3)
which displays the exponential fall-off, similarly to the chiral quark modetg,(E.6) for NJL and
Eqg. (4.8) for SQM, however the powers pfare different, exhibiting different dynamics in the
models. The parametefsandk for m= 4 MeV andm = 330 MeV in Eq. (5.1) are taken as in
[18]). As we can see from Fig. 2, the agreement is quite good and the ldétiaehardly allow to
discriminate between the mass values except=ab.6 fm. Of course, it would be very useful to
pin-down the correct long distance behavior from the lattice abd¥éd. The calculation of the
other (higher-twist) components within the holographic approach wouldogl$nughly desirable.

Our numerical study shows that the lattice data in Fig. 2 can be best fittedwith00 MeV,

similar to the current quark mass used in the NJL calculation at high valuag.oh particular,
for m; = 575 and 345 MeV we have uset= 140 and 51 MeV, respectively, in rough agreement
with the Gell-Mann-Oakes—Renner relatiem(qq) = f2m2. Thus, the interpretation afiin the
holographic models as tlwairrentquark mass seems consistent with this comparison.

= e 2T (1021 21Pr?/3) — 112172 /3)| = 1- P fAP+ 0 (), (5.2)
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6. Conclusions

The presented calculations show that the Euclidean lattices can be sullgesed to coarse
grain the wave function over short-distance scales, where the gluoeedegf freedom are inte-
grated out. A direct comparison to wave functions from various hadrooitels not only becomes
meaningful, but in some cases very successful. A quite unexpectdtiaesaerns the utility of
our calculations to determine the transversity information (the dependenite dransverse co-
ordinates), relevant for the light-cone physics; the infinite-momentum fraorewave functions,
integrated over the Bjorker- coincide in the impact-parameter space with the equal-time rest-
frame wave functions. This relation provides a way of checking the wanetibns for models
genuinely formulated in the LC variables. As an example, we have carriethisuanalysis for
holographic models.

We thank Sasa Prelovsek and Luka Santelj for their collaboration in the lediicelation [7].
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