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Parton distributions in impact parameter space, which are obtained by Fourier transforming GPDs,

exhibit a significant deviation from axial symmetry when thetarget and/or quark are transversely

polarized. Connections between this deformation and transverse single-spin asymmetries as well

as with quark-gluon correlations are discussed. The sign oftransverse deformation of impact pa-

rameter dependent parton distributions in a transversely polarized target can be related to the sign

of the contribution from that quark flavor to the nucleon anomalous magnetic moment. Therefore,

the signs of the Sivers function foru andd quarks, as well as the signs of quark-gluon correla-

tions embodied in the polarized structure functiong2 can be understood in terms of the proton

and neutron anomalous magnetic moments.
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Figure 1: Distribution of thej+ density foru andd quarks in the⊥ plane (xB j = 0.3) for a proton polarized
in thex direction in the model from Ref. [2]. For other values ofx the distortion looks similar. The signs of
the distortion are determined by the signs of the contribution from each quark flavor to the proton anomalous
magnetic moment.

1. Impact Parameter Dependent Parton Distributions

Generalized Parton Distributions (GPDs) can be obtained from the same light-cone wave func-
tion overlap integrals that yield form factors, except thatthe momentum fractionx of the active
quark is not integrated over, i.e. GPDs can be understood as an x decomposition of form fac-
tors. The 2-dimensional Fourier transform of the GPDHq(x,0, t) yields the distributionq(x,b⊥) of
unpolarized quarks and target, in impact parameter space [1]

q(x,b⊥) =
∫

d2∆⊥
(2π)2 Hq(x,0,−∆2

⊥)e−ib⊥·∆⊥ , (1.1)

with ∆⊥ = p′
⊥− p⊥. For a transversely polarized target (e.g. polarized in the+x̂-direction) the

impact parameter dependent PDFq+x̂(x,b⊥) is no longer axially symmetric and the transverse
deformation is described by the gradient of the Fourier transform of the GPDEq(x,0, t) [2]

q+x̂(x,b⊥) = q(x,b⊥)−
1

2M
∂

∂by

∫

d2∆⊥
(2π)2 Eq(x,0,−∆2

⊥)e−ib⊥·∆⊥ (1.2)

Eq(x,0, t) and hence the details of this deformation are not very well known, but itsx-integral, the
Pauli form factorF2, is. Eq. (1.2) allows to relate the average transverse deformation

dq
y ≡

∫

dx
∫

d2b⊥q(x,b⊥)by =
1

2M

∫

dxEq(x,0,0) =
κ p

q

2M
(1.3)

to the contribution from the corresponding quark flavor to the anomalous magnetic moment
κ p

u = 2κp +κn = 2∗1.793−1.913= 1.673 andκ p
d = 2κn +κp = 2∗ (−1.913)+1.793=−2.033.

Since 1
2M ≈ 0.1 f m this implies a very significant deformation|dy

q| = O(0.2 f m) for both u andd
quarks and in opposite directions.

For example,u quarks in a proton contribute with a positive anomalous magnetic moment and
d quarks (after factoring out the negatived quark charge) with a negative value. Eq. (1.2) thus
implies that for a nucleon target polarized in the+x̂ direction, the leading twist distribution ofu
quarks is shifted in the+ŷ direction while that ofd quarks is shifted in the−ŷ direction (Fig. 1).
This has important implications for the sign of transverse single-spin asymmetries (SSAs).
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Figure 2: The transverse distortion of the parton cloud for a proton that is polarized into the plane, in
combination with attractive FSI, gives rise to a Sivers effect for u (d) quarks with a⊥ momentum that is on
the average up (down).

2. Transverse Single-Spin Asymmetries

In a target that is polarized transversely (e.g. vertically), the quarks in the target can exhibit a
(left/right) asymmetry of the distributionfq/p↑(xB,kT ) in their transverse momentumkT [3, 4]

fq/p↑(xB,kT ) = f q
1 (xB,k

2
T )− f⊥q

1T (xB,k
2
T )

(P̂×kT ) ·S
M

, (2.1)

whereS is the spin of the target nucleon andP̂ is a unit vector opposite to the direction of the virtual
photon momentum. The fact that such a term may be present in (2.1) is known as the Sivers effect
and the functionf⊥q

1T (xB,k2
T ) is known as the Sivers function. The latter vanishes in a naive parton

picture since(P̂×kT ) ·S is odd under naive time reversal (a property known as naive-T-odd), where
one merely reverses the direction of all momenta and spins without interchanging the initial and
final states. The significant distortion of parton distributions in impact parameter space (Fig. 1)
provides a natural mechanism for a Sivers effect. In semi-inclusive DIS, when the virtual photon
strikes au quark in a⊥ polarized proton, theu quark distribution is enhanced on the left side of
the target (for a proton with spin pointing up when viewed from the virtual photon perspective).
Although in general the final state interaction (FSI) is verycomplicated, we expect it to be on
average attractive thus translating a position space distortion to the left into a momentum space
asymmetry to the right and vice versa (Fig. 2) [5]. Since thispicture is very intuitive, a few words
of caution are in order. First of all, such a reasoning is strictly valid only in mean field models for
the FSI as well as in simple spectator models [6]. Furthermore, even in such mean field or spectator
models there is in general no one-to-one correspondence between quark distributions in impact
parameter space and unintegrated parton densities (e.g. Sivers function) (for a recent overview, see
Ref. [7]). While both are connected by an overarching Wignerdistribution [8], they are not Fourier
transforms of each other. Nevertheless, since the primordial momentum distribution of the quarks
(without FSI) must be symmetric, we find a qualitative connection between the primordial position
space asymmetry and the momentum space asymmetry due to the FSI. Another issue concerns
the x-dependence of the Sivers function. Thex-dependence of the position space asymmetry is
described by the GPDE(x,0,−∆2

⊥). Therefore, within the above mechanism, thex dependence of
the Sivers function should be related to that ofE(x,0,−∆2

⊥). However, thex dependence ofE is
not known yet and we only know the Pauli form factorF2 =

∫

dxE. Nevertheless, if one makes the
additional assumption thatE does not fluctuate as a function ofx then the contribution from each
quark flavorq to the anomalous magnetic momentκ determines the sign ofEq(x,0,0) and hence of
the Sivers function. With these assumptions, as well as the very plausible assumption that the FSI

3



P
o
S
(
L
C
2
0
1
0
)
0
5
1

Transverse (Spin) Structure of Hadrons Matthias Burkardt

is on average attractive, one finds thatf⊥u
1T < 0, while f⊥d

1T > 0. Both signs have been confirmed by
a flavor analysis based on pions produced in a SIDIS experiment by the HERMEScollaboration [9]
and are consistent with a vanishing isoscalar Sivers function observed by COMPASS[10].

3. Transverse Force on Quarks in DIS

The chirally-even spin-dependent twist-3 parton distribution g2(x) = gT (x)−g1(x) is defined
as

∫

dλ
2π

eiλx〈PS|ψ̄(0)γµγ5ψ(λn)|Q2|PS〉

= 2
[

g1(x,Q
2)pµ(S ·n)+gT (x,Q

2)Sµ
⊥+M2g3(x,Q

2)nµ (S ·n)
]

.

Neglectingmq, one findsg2(x) = gWW
2 (x)+ ḡ2(x), with gWW

2 (x) =−g1(x)+
∫ 1

x
dy
y g1(y) [11], where

ḡ2(x) involves quark-gluon correlations, e.g. [12, 13]
∫

dxx2ḡ2(x) =
d2

3
(3.1)

with

4MP+P+Sxd2 = g
〈

P,S
∣

∣q̄(0)G+y(0)γ+q(0)
∣

∣P,S
〉

. (3.2)

At low Q2, g2 has the physical interpretation of a spin polarizability, which is why the matrix
elements (note that

√
2G+y = Bx −Ey)

χE2M2~S = 〈P,S|q†~α ×g~Eq |P,S〉 χB2M2~S = 〈P,S|q†g~Bq |P,S〉 (3.3)

are sometimes called spin polarizabilities or color electric and magnetic polarizabilities [14]. In the
following we will discuss that at highQ2 a better interpretation for these matrix elements is that of
an average ‘color Lorentz force’ [15].

To see this we express the ˆy-component of the Lorentz force acting on a particle with charge
g that is moving with (nearly) the speed of light~v = (0,0,−1) along the−ẑ direction in terms of
light-cone variables, yielding

g
[

~E +~v×~B
]y

= g(Ey +Bx) = g
√

2Gy+, (3.4)

which coincides with the component that appears in the twist-3 correlator above (3.2). Thus Eq.
(3.2) represents the (twist 2) quark density correlated with the transverse color-Lorentz force that
a quark would experience at that position if it moves with thevelocity of light in the−ẑ direction
— which is exactly what the struck quark does after it has absorbed the virtual photon in a DIS
experiment in the Bjorken limit. Therefore the correct semi-classical interpretation of Eq. (3.2) is
that of an average1 transverse force

Fy(0) ≡ −
√

2
2P+

〈P,S| q̄(0)G+y(0)γ+q(0) |P,S〉 (3.5)

= −2
√

2MP+Sxd2 =−2M2d2

1The average is meant as an ensemble average since the forwardmatrix element in plane wave states automatically
provides an average over the nucleon volume.
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acting on the active quark in the instant right after2 it has been struck by the virtual photon.
Although the identification of〈p|q̄γ+G+yq|p〉 as an average color Lorentz force due to the final

state interactions (3.5) may be intuitively evident from the above discussion, it is also instructive
to provide a more formal justification. For this purpose, we consider the time dependence of the
transverse momentum of the ‘good’ component of the quark fields (the component relevant for DIS
in the Bjorken limit)q+ ≡ 1

2γ−γ+q

2p+
d
dt
〈py〉 ≡ d

dt
〈PS| q̄γ+ (py −gAy)q |PS〉 (3.6)

=
1√
2

d
dt

〈PS|q†
+ (py −gAy)q+ |PS〉

= 2p+ 〈PS|
[

˙̄qγ+ (py −gAy)q+ q̄γ+ (py −gAy) q̇
]

|PS〉
−〈PS| q̄γ+gȦyq |PS〉 .

Using the QCD equations of motion

q̇ =
(

igA0+ γ0~γ ·~D
)

q, (3.7)

where−iDµ = pµ −gAµ , yields

2p+
d
dt
〈py〉 = 〈PS| q̄γ+g

(

Gy0+Gyz
)

q |PS〉+ ‘ 〈PS| q̄γ+γ−γ iDiD jq |PS〉′

=
√

2〈PS| q̄γ+gGy+q |PS〉+ ‘ 〈PS| q̄γ+γ−γ iDiD jq |PS〉′ , (3.8)

where ‘〈PS| q̄γ+γ−γ iDiD jq |PS〉′ stands symbolically for all terms that involve a product ofγ+γ−

as well as aγ⊥ and only⊥ derivativesDi.
Now it is important to keep in mind that we are not interested in the average force on the

‘original’ quark fields (before the quark is struck by the virtual photon), butafter absorbing the
virtual photon and moving with (nearly) the speed of light inthe−ẑ direction. In this limit, the
first term on the r.h.s. of (3.8) dominates, as it contains thelargest number of ‘+’ Lorentz indices.
Dropping the other terms yields (3.5).

The identification of 2M2d2 with the average transverse force acting on the active quarkin a
SIDIS experiment is also consistent with the Qiu Sterman result [16] for the average transverse
momentum of the ejected quark (also averaged over the momentum fractionx carried by the active
quark)

〈ky
⊥〉=− 1

2P+

〈

P,S

∣

∣

∣

∣

q̄(0)
∫ ∞

0
dx−G+y(x+ = 0,x−)γ+q(0)

∣

∣

∣

∣

P,S

〉

(3.9)

The average transverse momentum is obtained by integratingthe transverse component of the color
Lorentz force along the trajectory of the active quark — which is an almost light-like trajectory
along the−ẑ direction, with z = −t. The local twist-3 matrix element describing the force at
time=0 is the first integration point in the Qiu-Sterman integral (3.9).

Lattice calculations of the twist-3 matrix element yield [17]

d(u)
2 = 0.010±0.012 d(d)

2 =−0.0056±0.0050 (3.10)

2‘Right after’, since the quark-gluon correlator in (3.5) islocal!
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renormalized at a scale ofQ2 = 5 GeV2 for the smallest lattice spacing in Ref. [17]. These numbers
are also consistent with experimental studies [18]. Using (3.5) these (ancient) lattice results thus
imply

F(u) ≈−100MeV/fm F(d) ≈ 56MeV/fm. (3.11)

In the chromodynamic lensing picture, one would have expected thatF(u) andF(d) are of about the
same magnitude and with opposite sign. The same holds in the largeNC limit. A vanishing Sivers
effect for an isoscalar target would be more consistent withequal and opposite average forces.
However, since the error bars ford2 include only statistical errors, the lattice result may notbe
inconsistent withd(d)

2 ∼−d(u)
2 .

The average transverse momentum from the Sivers effect is obtained by integrating the trans-
verse force to infinity (along a light-like trajectory)〈ky〉= ∫ ∞

0 dtFy(t). This motivates us to define
an ‘effective range’

Re f f ≡
〈ky〉

Fy(0)
. (3.12)

Note thatRe f f depends on how rapidly the correlations fall off along a light-like direction and it
may thus be larger than the (spacelike) radius of a hadron. Ofcourse, unless the functional form of
the integrand is known,Re f f cannot really tell us about the range of the FSI, but if the integrand in
(3.5) does not oscillate, (3.12) provides a reasonable estimate for the range over which the integrand
in (3.5) is significantly nonzero.

Fits of the Sivers function to SIDIS data yield about|〈ky〉| ∼ 100 MeV [19]. Together with the
(average) value for|d2| from the lattice this translates into an effective rangeRe f f of about 1 fm. It
would be interesting to compareRe f f for different quark flavors and as a function ofQ2, but this
requires more precise values ford2 as well as the Sivers function.

A relation similar to (3.5) can be derived for thex2 moment of the twist-3 scalar PDFe(x). For
its interaction dependent twist-3 part ¯e(x) one finds for an unpolarized target [20]

4MP+P+e2 = g〈p| q̄σ+iG+iq |P〉 , (3.13)

wheree2 ≡
∫ 1

0 dxx2ē(x). The matrix element on the r.h.s. of Eq. (3.13) can be relatedto the average
transverse force acting on a transversely polarized quark in an unpolarized target right after being
struck by the virtual photon. Indeed, for the average transverse momentum in the+ŷ direction, for
a quark polarized in the+x̂ direction, one finds

〈ky〉= 1
4P+

∫ ∞

0
dx−g〈p| q̄(0)σ+yG+y(x−)q(0) |p〉 . (3.14)

A comparison with Eq. (3.13) shows that the average transverse force att = 0 (right after being
struck) on a quark polarized in the+x̂ direction reads

Fy(0) =
1

2
√

2p+
g〈p| q̄σ+yG+yq |p〉= 1√

2
MP+Sxe2 =

M2

2
e2. (3.15)

The impact parameter distribution for quarks polarized in the+x̂ direction [21] is shifted in
the +ŷ direction [22, 23]. Applying the chromodynamic lensing mechanism implies a force in
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the negative ˆy direction for these quarks and one thus expectse2 < 0 for both u and d quarks.
Furthermore, sinceκ⊥ > κ , one would expect that in a SIDIS experiment the⊥ force on a⊥
polarized quark in an unpolarized target on average to be larger than that on unpolarized quarks in
a⊥ polarized target, and thus|e2|> |d2|.

4. Summary

The GPDEq(x,0,−∆2
⊥), which arises in the ‘x-decomposition’ of the contribution from quark

flavor q to the Pauli form factorFq
2 describes the transverse deformation of the unpolarized quark

distribution in impact parameter space. That deformation provides a very intuitive mechanism for
transverse SSAs in SIDIS. As a result, the signs of SSAs can berelated to the contribution from
quark flavorq to the nucleon anomalous magnetic moment. Quark-gluon correlations appearing in
the x2-moment of the twist-3 part of the polarized parton distribution gq

2(x) have a semi-classical
interpretation as the average (enemble average) transverse force acting on the struck quark in DIS
from a transversely polarized target in the moment after it has absorbed the virtual photon. Since
the direction of that force can be related to the transverse deformation of PDFs, one can thus also
relate the sign of these quark-gluon correlations to the contribution from quark flavorq to the
nucleon anomalous magnetic moment.

Such a correlation between observables that at first appear to have little in common also occurs
in the chirally odd sector: the impact parameter space distribution of quarks with a given transver-
sity in an unpolarized target can be related to the Boer-Mulders function describing the left-right
asymmetry of quarks with a given transversity in SIDIS from an unpolarized target. Furthermore,
semi-classically, the quark-gluon correlations appearing in thex2-moment of the twist-3 part of the
scalar PDFe(x) describes the average transverse force acting on a quark with given transversity
immediately after it has absorbed the virtual photon.
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