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INFN Cosenza, Università della Calabria, I-87036 Rende (CS), Italy and
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
E-mail: igor.cherednikov@jinr.ru

A. I. Karanikas
University of Athens, Department of Physics, Nuclear and Particle Physics Section,
Panepistimiopolis, GR-15771 Athens, Greece
E-mail: akaran@phys.uoa.gr

We summarize the renormalization-group properties of transverse-momentum dependent (TMD)

parton distribution functions (PDF)s arguing that in the light-cone gauge the overlapping ultra-

violet and rapidity divergences cannot be solely controlled by (dimensional) regularization, but

necessitate their renormalization. In doing so, we show that at the one-loop order this additional

divergence entails an anomalous dimension which can be attributed to a cusp in the gauge con-

tour at light-cone infinity. Then, we present a recent analysis of TMD PDFs which incorporates

in the gauge links the Pauli term∼ Fµν [γµ ,γν ]. This generalized treatment of gauge invariance

is shown to be justified, in the sense that it does not modify the behavior of the leading-twist

contribution, though it contributes to the anomalous dimension of that of twist-three. An im-

portant consequence of the inclusion of the spin-dependentPauli term is the appearance of a

constant phase—the same for the leading twist-two and subleading distribution functions—that

ensues from the interaction of the Pauli term in the transverse gauge link with the gauge field

accompanying the fermion. Remarkably, this phase has opposite sign for the Drell-Yan process

as compared to the semi-inclusive DIS.
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1. Introduction and Theoretical Framework

One of the problems inherent in the definition of hadronic observables is how to ensure gauge
invariance. This problem arises because correlators are nonlocal quantities which contain local
operators that transform differently under gauge transformations, hence entailing a dependence
on the gauge adopted. Clearly, physical quantities should not depend onthe choice of the gauge
we choose to work — this should merely be a matter of (calculational) convenience. To render
integratedparton distribution functions (PDF)s gauge invariant, it is sufficient to insert into their
definition a Wilson line — a gauge link — between the two Heisenberg quark operators that renders
their product gauge invariant [1]. From the point of view of renormalizability, this operation intro-
duces additional contributions to the anomalous dimension of the PDFs. Thesecontributions stem
from the local obstructions of the gauge contours: endpoints, cusps, and self-crossing points (see
[2] for a technical exposition and references). It is to be emphasized that although the gauge link is
nonlocal, no explicit path dependence is introduced, e.g., on the gauge-contour length. Actually, to
ensure the gauge invariance of the PDFs it is even sufficient to use a straight lightlike line, because
integrated PDFs are defined on the light cone and the only contribution fromthe gauge link to the
anomalous dimension of the PDF comes from its endpoints (see, for instance,[3] and references
cited therein). Hence, one has for the integrated PDF of a quarki in a quarka

fi/a(x) =
1
2

∫

dξ−

2π
e−ik+ξ−

〈P|ψ̄i(ξ−,0⊥)γ+[ξ−,0−|C ]ψi(0
−,0⊥)|P〉 , (1.1)

where

[ξ−,0−|C ] = P exp

[

− ig
∫ ξ−

0−[C ]
dzµAa

µ(0,z−,0⊥)ta

]

(1.2)

is a path-ordered gauge link (Wilson line) in the lightlike direction from 0 toξ along the contourC .
One may insert a complete set of states and split the gauge link[ξ−,0−] into two gauge links

connecting the points 0 andξ through∞. This is mathematically sound, provided the junction
(hidden at infinity) of the two involved contours is smooth, i.e., entails only a trivial renormalization
of the junction point so that the validity of the algebraic identity[x2,z | C1] [z,x1 | C2] = [x2,x1 | C =

C1∪C2] is ensured. This being the case, it is possible to associate each of the quark fields with its
own gauge link because the attached contour has no bearing on the definition of fi/a(x). Then, the
struck quark can be replaced by an “eikonalized quark”

Ψ(x−|Γ) = ψ(x−)[x−,∞−|Γ] ≡ ψ(x−)Pexp

[

−ig
∫ x−

∞−[Γ]
dzµAµ

a (0+,z−,0⊥)ta

]

(1.3)

which is a contour-dependent Mandelstam fermion field [4] (with an analogous definition for the
antifermion field). In this scheme, the gluon reconstitution in the gauge-invariant correlator for the
integrated PDF involves gluons emanating either from the gauge links — givingrise to selfenergy-
like diagrams — or contractions with the gluon self-fields of the Heisenberg operator for the struck
quark which generate crosstalk-type diagrams. Note that for the sake ofclarity and simplicity, we
ignore bound states (spectators). As a result, one has

f split
i/a (x) =

1
2 ∑

n

∫

dξ−

2π
e−ik+ξ−

〈P|Ψ̄i
(

ξ−,0⊥|C1
)

|n〉γ+〈n|Ψi
(

0−,0⊥|C2
)

|P〉 . (1.4)
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This concept was carried over tounintegratedPDFs, i.e., to those PDFs which still depend on
the transverse momenta — hence termed TMD PDFs. However, TMD PDFs with only longitudinal
gauge links are not completely gauge invariant under different boundary conditions on the gluon
propagator in the light-cone gaugeA+ = 0. The reason is thatx−-independent gauge transforma-
tions are still possible under the same gauge condition. Hence, the naive collinear gauge-invariant
TMD PDF definition as for the integrated case is inapplicable. Refurbishmentis provided via the in-
troduction of transverse gauge links which necessarily stretch out off the light cone to infinity [5, 6].
This generalizes Eq. (1.4) for a quark withkµ = (k+,k−,k⊥) in a quark withpµ = (p+, p−,0⊥) to
the expression

fq/q(x,k⊥) =
1
2

∫

dξ−

2π
d2ξξξ⊥

(2π)2 exp
(

−ik+ξ− + ik⊥ ·ξξξ⊥

)

〈

q(p)|ψ̄(ξ−,ξξξ⊥)[ξ−,ξξξ⊥;∞−,ξξξ⊥]†

×[∞−,ξξξ⊥;∞−,∞∞∞⊥]†γ+[∞−,∞∞∞⊥;∞−,0⊥][∞−,0⊥;0−,0⊥]ψ(0−,0⊥)|q(p)
〉∣

∣

∣

ξ +=0
(1.5)

in which

[∞−,ξξξ⊥;ξ−,ξξξ⊥] ≡ P exp

[

ig
∫ ∞

0
dτ n−µ Aµ

a ta(ξ +n−τ)

]

, (1.6)

[∞−,∞∞∞⊥;∞−,ξξξ⊥] ≡ P exp

[

ig
∫ ∞

0
dτ l ·Aat

a(ξξξ⊥ + lτ)

]

(1.7)

are the lightlike and the transverse gauge link, respectively.

2. One-Loop Gluon Virtual Corrections in the A+ = 0 Gauge

The pursuit of a proper definition of TMD PDFs is a long-standing problemthat was not ac-
complished with the definition above. The reason is — frankly speaking — thatnobody knows how
the contour behaves at light-cone infinity when it ventures out in the transverse directions. This be-
havior has influence on the singularity structure of the gluon propagator inthe light-cone gauge

A+ = 0, notably,DLC
µν(q) = −i

q2−λ 2+i0

(

gµν −
qµ n−ν +qν n−µ

[q+]

)

, via the boundary conditions to go around
its singularities. To estimate this influence, one has to calculate the one-loop virtual corrections
in the A+ = 0 gauge in conjunction with various boundary conditions (which absorb large-scale
effects) and carry out the renormalization of the contour-dependent quark operators defined in Eq.
(1.3). Two of us undertook this calculation, announced in [7, 2, 8], with asummary of the approach
being given in [9]. The contributing diagrams are shown here in Fig. 1, while the corresponding al-
gebraic expressions are given in Table 1 using the following symbolic abbreviations (the couplings
g andg′ below are labeled differently only in order to keep track of their origin; ultimately, they
will be set equal):
(i) Q: struck quarkψi(ξ ) = e−ig[

∫

dηψ̄ ˆA ψ] ψ free
i (ξ ) — Heisenberg operator,

(ii) longitudinal gauge link:[n−],
(iii) transverse gauge link:[l⊥],
(iv) g refers to the QCD Lagrangian — see item (i),
(v) couplingg′ refers to the exponent of the gauge links, i.e.,g′

∫ ∞
0 dτ . . . ,

(vi) productg′g′ corresponds to path-ordered line integrals in the exponent of the gaugelinks, i.e.,
g′g′

∫ ∞
0 dτ

∫ τ
0 dσ . . . .

3
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Figure 1: One-loop gluon virtual corrections tofq/q in the A+ = 0 gauge. The double lines describe the
gauge links attached to the fermions (heavy lines), while the curly lines represent gluons, and the symbol⊗

denotes a line integral. The Hermitian-conjugate (mirror)diagrams are not shown.

Without going into too much detail, the results of this study show that the overlapping ultra-
violet (UV) and rapidity divergences cannot be solely controlled by the dimensional (or any other)
regularization. The ensuing divergence is of the type(1/ε) ln(η/p+), which becomes infinite when
η → 0, and has, therefore, to be cured by an appropriate renormalization procedure. At this point it
is important to mention that the terms on the diagonal in Table 1 represent selfenergy contributions,
while all other terms are of the crosstalk type. In the gaugeA+ = 0 only the termsQQ andQ[l⊥]

are non-vanishing. Moreover, the pole-prescription dependence in diagram (a) is canceled by its
counterpart in (d) — see Fig. 1. Taking into account the mirror contributions to (a) and (d) (not
shown in Fig. 1), one finds the following total contribution from virtual gluoncorrections [2, 7]:

Σ(a+d)
UV (αs,ε) = 2

αs

π
CF

[

1
ε

(

3
4

+ ln
η
p+

)

− γE + ln4π
]

. (2.1)

struck quark longitudinal gauge link transverse gauge link

struck quark QQ ⇐⇒ (a) Q[n−] ⇐⇒ (b) Q[l⊥] ⇐⇒ (d)
longitudinal gauge link [n−][n−] ⇐⇒ (c) [n−][l⊥] ⇐⇒ (f)=0
transverse gauge link [l⊥][l⊥] ⇐⇒ (e)

Table 1: Structure of the one-loop gluon virtual corrections tofq/q(x,k⊥) shown in Fig. 1.
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From this expression one obtains forfq/q(x,k⊥) the anomalous dimension
(

γ = µ
2

1
Z

∂αs
∂ µ

∂Z
∂αs

)

γLC
one−loop =

αs

π
CF

(

3
4

+ ln
η
p+

)

= γsmooth−δγ , (2.2)

whereη is the rapidity parameter with[η ] = [mass] and δγ represents the deviation from the
anomalous dimension of the gauge-invariant quark propagator in a covariant gauge (see [3] and
earlier references cited therein). As argued in [7, 2, 9], such an anomalous dimension can be
associated with a cusp in the gauge contour at infinity and originates from therenormalization of
the gluon interactions with this local contour obstruction. Therefore, one can claim thatδγ can be
identified with the universal cusp anomalous dimension [10] at the one-looporder. But the choice
of the gaugeA+ = 0 should not affect the renormalization properties of the TMD PDF. Thus,the
definition of fq/q(x,k⊥) given by Eq. (1.5) has to be modified by a soft factor (counter term) [11]

R≡ Φ(p+,n−|0)Φ†(p+,n−|ξ ) , (2.3)

whereΦ andΦ† are appropriate eikonal factors to be evaluated along a jackknifed contour off the
light cone (the explicit expressions and a graphic illustration can be foundin [7, 2, 9]). We have
shown there by explicit calculation that in theA+ = 0 gauge withq−-independent pole prescriptions
(advanced, retarded, principal value), the anomalous dimension associated with this quantity ex-
actly cancelsδγ, rendering the modified definition of the TMD PDF free from gauge artifacts. On
the other hand, adopting instead aq−-dependent pole prescription (Mandelstam [12], Leibbrandt
[13]), no anomalous-dimension anomaly appears and the soft factor reduces benignly to unity [8].

3. Inclusion of Pauli Spin Interactions

The conventional way to restore the gauge invariance of hadronic matrix elements is to use
gauge links as those defined in Eqs. (1.6) and (1.7). However, this is onlythe minimal way to
achieve this goal; it ignores the direct spin interactions because the gaugepotentialAa

µ is spin-
blind. To accommodate the direct interaction of spinning particles with the gaugefield, one has to
take into account the so-called Pauli term∼ FµνSµν , whereSµν = 1

4[γµ ,γν ] is the spin operator.
Following this generalized conception of gauge invariance, we promote the definition of the TMD
PDF to [14]

f Γ
i/h(x,k⊥) =

1
2

Tr
∫

dk−
∫

d4ξ
(2π)4e−ik·ξ 〈h|ψ̄i(ξ )[[ξ−,ξξξ⊥;∞−,ξξξ⊥]]†[[∞−,ξξξ⊥;∞−,∞∞∞⊥]]†

×Γ[[∞−,∞∞∞⊥;∞−,0⊥]][[∞−,0⊥;0−,0⊥]]ψi(0)|h〉 ·R , (3.1)

whereΓ denotes one or moreγ matrices in correspondence with the particular distribution in ques-
tion, and the state|h〉 stands for the appropriate target. In the unpolarized case we have|h〉= |h(P)〉,
with P being the momentum of the initial hadron, whereas for a (transversely) polarized target the
state is|h〉 = |h(P),S⊥〉. The enhanced lightlike and transverse gauge links (denoted by double
square brackets) contain the Pauli term and are given, respectively,by the following expressions:

[[∞−,0⊥;0−,0⊥]] = P exp

[

−ig
∫ ∞

0
dσ uµAµ

a (uσ)ta− ig
∫ ∞

0
dσ SµνFµν

a (uσ)ta
]

, (3.2)
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Symbols Expressions Figure 2 Value

U1
∫ ∞

0 dτ l ·A (lτ) (a) 6= 0
U2

∫ ∞
0 dτ S·F (uτ) (b) 6= 0

U3
∫ ∞

0 dτ S·F (lτ) — 0
U4

∫ ∞
0 dτ

∫ τ
0 dσ (l ·A (lτ)) (l ·A (lσ)) — 0

U5
∫ ∞

0 dτ
∫ τ

0 dσ (l ·A (lτ)) (S·F (lσ)) — 0
U6

∫ ∞
0 dτ

∫ τ
0 dσ (S·F (lτ)) (l ·A (lσ)) — 0

U7
∫ ∞

0 dτ
∫ τ

0 dσ (S·F (uτ)) (S·F (uσ)) (c) 0
U8

∫ ∞
0 dτ

∫ τ
0 dσ (S·F (lτ)) (S·F (lσ)) — 0

U9
∫ ∞

0 dτ
∫ ∞

0 dσ (l ·A (lτ)) (S·F (uσ)) (d) 6= 0
U10

∫ ∞
0 dτ

∫ ∞
0 dσ (S·F (lτ)) (S·F (uσ)) — 0

Table 2: Individual virtual-gluon contributions appearing in the evaluation of Eq. (3.4) up toO(g2).

[[∞−,∞∞∞⊥;∞−,0⊥]] = P exp

[

−ig
∫ ∞

0
dτl⊥·A

a
⊥(lτ)ta− ig

∫ ∞

0
dτSµνFµν

a (lτ)ta
]

. (3.3)

3.1 Gauge links with Pauli terms up to O(g2)

Adopting this reasoning, we have to calculate in theA+ = 0 gauge the expression

[[∞−,∞∞∞⊥;∞−,0⊥]] · [[∞−,0⊥;0−,0⊥]] = 1− ig(U1 +U2 +U3)−g2(U4 +U5 + . . .U10) (3.4)

with Fµν
a (∞−,0+,ξξξ⊥) = 0, ψi(ξ ) = e[−ig

∫

dη ψ̄ ˆA ψ]ψ free
i (ξ ) and an analogous expansion for the

transverse gauge links (see Table 2), whereas the contributing diagramsare displayed in Fig. 2. Let
us quote here some important features of the presented theoretical framework referring for details
to our recent work in Ref. [14]: (i) The Pauli term is not reparameterization invariant — unlike the
usual Dirac term. Therefore, we have to use the dimensionful vectorsn+

µ → u∗µ = p−n+
µ , n−µ →

uµ = p+n−µ , l⊥ → p+l⊥. (ii) The Pauli spin-interaction terms do not completely vanish alongn−

in theA+ = 0 gauge, whereas terms containingF (lτ) (or F (lσ)) cancel out in the product of the
gauge links andFµν

a (∞−,0+,ξξξ⊥) = 0. (iii) To theg2-order level, the Pauli term reads

S·F ≡ SµνF
µν = 2S+−F

+− +2S+iF
+i +2S−iF

−i +Si j F
i j (3.5)

and has the following non-zero components:

F
+− = ∂ +

A
− , F

+i = ∂ +
A

i , (3.6)

F
−i = ∂−

A
i −∂ i

A
− , F

i j = ∂ i
A

j −∂ j
A

i . (3.7)

(iv) The diagrams (a)–(d) in Fig 2 represent virtual gluon correctionsand contain UV and rapidity
divergences that give rise to the anomalous dimension of the TMD PDF. In contrast, the diagrams
(e)–(g), which describe real-gluon exchanges across the cut (vertical dashed line), contribute only
finite terms.

From Fig. 2, we see that the gauge-link correlator contains contributions of two different types
related to selfenergy- and crosstalk-type diagrams. To discuss the structure of the correlator in a
compact way, it is useful to use the following symbolic abbreviations:

6
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(b) (c)(a) (d)

(f) (g)(e)

Figure 2: One-loop gluon virtual corrections tofq/q in the A+ = 0 gauge. Graphs (a), (b), (c), and (d)
describe virtual gluon corrections; graphs (e), (f), and (g) represent real-gluon exchanges across the cut
(vertical dashed line). The double lines decorated with a ring represent enhanced gauge links containing the
Pauli term.

Q: Gauge self-field in the Heisenberg quark operatorψi(ξ ) = e−ig[
∫

dη ψ̄ ˆA ψ] ψ free
i (ξ )

l ·A (lτ) ≡ A⊥: Standard transverse gauge potential

S·F (lτ) ≡ F: Tensor (Pauli) term

Then we obtain atO(g2) the following results (consult Fig. 2 in conjunction with Table 2):
Selfenergy-type contributions

• A⊥A⊥: 〈U4〉 = 0 not shown

• F−F− : 〈U7〉 = 0 diagram (c) in Fig. 2

• F⊥F⊥ : 〈U8〉 = 0 not shown

Crosstalk-type contributions

• QA⊥: 〈U1〉
UV = −αsCF

1
ε iC∞ with C∞ = {0(adv);−1(ret);−1

2(PV)} — diagram (a). This
term cancels the pole-prescription-dependent term in the UV-divergent part of the fermion
selfenergyQQ.

• QF−: 〈U2〉 with (QF−)− = 〈U −
2 〉 and(QF−)⊥ = 〈U ⊥

2 〉 — diagram (b). Accordingly, for
the leading twist-two TMD PDF, we find for the semi-inclusive DIS (SIDIS)

Γtw−2〈U
−

2 〉+ 〈U −
2 〉†Γtw−2 =

i
2

CFΓtw−2 , (3.8)

Γtw−2〈U
⊥

2 〉+ 〈U ⊥
2 〉†Γtw−2 = −

i
4

CF Γtw−2 . (3.9)

These two results combine to produce a constant phase (unrelated to that found in [5])

δtw−2 = αsCFπ (3.10)

7
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which is also valid for the twist-three TMD PDF, i.e.,δtw−3 = αsCFπ, but flips signfor the
Drell-Yan (DY) process because it depends on the direction of the longitudinal gauge link.
Hence, our analysis [14] predicts the important relation

δSIDIS = −δDY . (3.11)

• QF⊥: 〈U3〉 = 0 not shown

• A⊥F⊥: 〈U6〉 = −〈U5〉, hence mutually canceling

• A⊥F−: 〈U9〉 = 〈U9〉
† — diagram (d) in Fig. 2 — (“gluon mass”λ 2 drops out at the end):

〈U9〉 = −
1

8π
CF[γ+,γ−]Γ(ε)

(

4π
µ2

λ 2

)ε

. (3.12)

This nontrivial Dirac structure entails

Γunpol. = γ+ : Γunpol.[γ+,γ−] = −[γ+,γ−]Γunpol. , (3.13)

Γhelic. = γ+γ5 : Γhelic.[γ+,γ−] = −[γ+,γ−]Γhelic. , (3.14)

Γtrans. = iσ i+γ5 : Γtrans.[γ+,γ−] = −[γ+,γ−]Γtrans, (3.15)

where obvious acronyms have been used. Taking into account the mirrordiagrams (not
shown in Fig. 2), the twist-two terms mutually cancel by virtue of the relation

[γ+,γ−]Γtw−2 = −Γtw−2[γ+,γ−] = 2Γtw−2 ,

which permits a probabilistic interpretation of the twist-two TMD PDF as a density onac-
count ofA⊥F− → 0. On the other hand, the twist-three TMD PDF gets a non-vanishing
contribution to its anomalous dimension as one sees from

Γtw−3〈U9〉+ 〈U9〉
†Γtw−3 = −

CF

4π
[γ+,γ−]Γ(ε)

(

4π
µ2

λ 2

)ε

.

• F⊥F−: 〈U10〉 = 0 without assuming any particular form of the gauge field at light cone∞.

3.2 Real-Gluon Contributions at O(g2)

Besides the virtual gluon corrections, there are also real gluon exchanges that contribute finite
contributions to the TMD PDF. The main difference from the previously considered case is that now
the discontinuity goes across the gluon propagator that has to be replacedby the cut one. More-
over, the Dirac structures, marked above by the symbolΓ, are sandwiched between Dirac matrices
stemming from Pauli terms standing on different sides of the cut. The real-gluon contributions are
specified in Table 3.

Using the same symbolic notation as in the previous subsection, we briefly remark that

• F−F−: 〈U11〉 → 0 (at least power-suppressed∼ p−)

• A⊥F−: 〈U12〉+ 〈U12〉
† ∼ Γ[γ+,γ−]+ [γ+,γ−]Γ = 0

• QF−: 〈U −
13〉+ 〈U −

13〉
† and〈U ⊥

13〉+ 〈U ⊥
13〉

† mutually cancel up to a power-suppressed term.

8
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Symbols Expressions Figure 2

U11
∫ ∞

0 dτ
∫ ∞

0 dσ (S·F (uτ)) Γ (S·F (uσ +ξ−;ξξξ⊥)) (e)
U12

∫ ∞
0 dτ

∫ ∞
0 dσ (l ·A (lτ)) Γ (S·F (uσ +ξ−;ξξξ⊥)) (f)

U13
∫ ∞

0 dσΓ (S·F (uσ +ξ−;ξξξ⊥)) (g)

Table 3: Individual real-gluon contributions toO(g2) corresponding to the diagrams(e),( f ),(g) in Fig. 2.

4. Highlights and Conclusions

We argued that the dimensional regularization of overlapping UV and rapidity divergences
in TMD PDFs is not sufficient to render the TMD PDF finite — one needs renormalization [7,
2]. To remedy this deficiency, a soft factor [11] along a jackknifed contour off the light cone
was introduced into the definition of the TMD PDF [7] whose anomalous dimensioncancels in
leading loop order the cusp anomalous dimension entailed by this overlapping divergence (with
a full-fledged discussion being given in [2]). The modified TMD PDF reproduces the standard
integrated PDF and is controlled by an evolution equation with the same anomalousdimension as
one finds in covariant gauges with no dependence on the adopted pole prescription for the gluon
propagator — this would be impossible without the soft renormalization factor (see [2] and for a
more dedicated discussion [15]). In particular, using theA+ = 0 gauge in conjunction with the
Mandelstam-Leibbrandt pole prescription [12, 13], no anomalous-dimension defect appears and
thus the soft factor becomes trivial. An important finding of this approach isthat the anomalous
dimension of the unpolarized TMD PDF for SIDIS and the DY process is the same, i.e.,γSIDIS

fq/q
=

γDY
fq/q

, albeit the sign of theε term in the gluon propagator 1
q++iε is different for these two processes

— irrespective of the boundary condition applied. Quite recently, Collins discussed alternative
ways to redefine the TMD PDFs in such a way as to avoid rapidity divergences [16].

We also presented a new scheme for gauge-invariant TMD PDFs which includes the direct
interaction of spinning particles with the gauge field by means of the Pauli term inthe longitudinal
and transverse gauge links. In some sense, the Pauli spin interaction is theabstract analogue of a
Stern-Gerlach apparatus — sort of — and gives rise through the transverse gauge link to a constant
phaseδ = αsCFπ, which is the same for twist-two and twist-three TMD PDFs, but flips sign when
the direction of the gauge link is reversed — thus breaking universality. Asa result, one finds
δDY = −δSIDIS. To facilitate calculations, we developed in Ref. [14] Feynman rules for enhanced
gauge links — longitudinal and transverse — which supplement those derived before for the stan-
dard gauge links by Collins and Soper [1]. Because the Pauli term contributes to the anomalous
dimension of the twist-three TMD PDF, the evolution of such quantities is more delicate and may
require the modification of the renormalization factor to preserve its density interpretation.

Bottom line: Our results — most significant amongst them the appearance of anon-universal
phase — may stimulate both theoretical and experimental activities. On the other hand, T-even
and T-odd TMD PDFs may become “measurable” on the lattice, so that it seems possible that
non-trivial Wilson lines, as those we discussed in this presentation, may be revealed in the future.
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