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structure of the nucleon and the shape of a spatially extended particle is determined by its intrin-

sic quadrupole moment which is first order moment of the charge density operator. With some

experimental indications of a deformed nucleon, we have calculated the intrinsic quadrupole mo-
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1. Introduction

The electromagnetic form factors are the fundamental quantities of theoretical and experimen-
tal interest to investigate the internal structure of nucleon. The knowledge of internal structure of
nucleon in terms of quarks and gluons degrees of freedom of Quantum Chromodynamics (QCD)
provide a basis for understanding more complex, strongly interacting matter. While QCD is ac-
cepted as the fundamental theory of strong interactions, it cannot be solved accurately in the non-
perturbative regime. A coherent understanding of the hadron structure in this energy regime is
necessary to describe the strong interactions as they are sensitive to the pion cloud and provide a
test for the QCD inspired effective field theories based on the chiral symmetry. Recently, a wide
variety of accurately measured data have been accumulated for the static properties of baryons,
for example, masses, electromagnetic moments, charge radii, and low energy dynamical properties
such as scattering lengths and decay rates etc.. The charge radii and quadrupole moments are im-
portant observables in hadronic physics as they lie in the nonperturbative regime of QCD and give
valuable information on the internal structure of hadrons.

The Naive Quark Model (NQM) is unable to explain the magnitude and sign of deformation
measured for the case of nucleon and �. A promising approach offered to solve QCD in this en-
ergy regime are the constituent quark models which can be constructed so as to include the relevant
properties of QCD coming from the consequences of the spontaneous breaking of chiral symmetry
(SB). One of the important nonperturbative approaches in this energy regime is chiral constituent
quark model (CQM) [1]. The CQM coupled with the “quark sea” generation through the chiral
fluctuation of a constituent quark into a Goldstone bosons (GBs) [2, 3, 4], successfully explains
the “proton spin crisis” [5], hyperon  decay parameters [6], the octet and decuplet baryons mag-
netic moments [7]. The extension to the SU(4) symmetry successfully predicts the contribution
of intrinsic charm (IC) content in the low lying and charmed baryon magnetic moments and their
radiative decay widths [8]. In this context, it become desirable to extend the model to other low en-
ergy properties like charge radii, quadrupole moment, and higher order moments of the multipole
expansion.

The purpose of present communication is to calculate the intrinsic quadrupole moment of the
octet and decuplet baryons within the framework of CQM using the general parameterization
method. In order to understand the important role played by the pion cloud and SU(3) symmetry
breaking in measuring the quadrupole moment we would carry out the calculations with and with-
out symmetry breaking. The results have also been compared with the NQM predictions and the
latest available data. Further, it would also be interesting to understand in detail the role of GP
model parameters in the determination in of baryon quadrupole moment.

2. Intrinsic quadrupole moment of the nucleon

The mean square charge radii �r2
B� and quadrupole moments (QB) are the lowest order moments

of the charge density operator  in a low-momentum expansion. For example, for any baryon �B�
with charge eB, the terms up to order of q2 for the charge density are

�B��q��B�� eB�
q2

6
r2
B�

q2

6
QB� ����� � (2.1)
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where q is the photon momentum transferred to the baryon. The first two terms arise due to the
spherically symmetric monopole part of charge density, while the third term arises due to the
quadrupole part of the charge density. They characterize the total charge, spatial extension of
charge radii, and shape of the system, respectively.

The shape of a spatially extended particle is determined by its quadrupole moment [9, 10, 11],
corresponding to the charge quadrupole form factor GC2�q2� at zero momentum transfer. The
intrinsic quadrupole moment of a nucleus with respect to the body frame of axis is defined as

Q0 �

�
d3r �r��3z2� r2� � (2.2)

If the charge density is concentrated along the z-direction (symmetry axis of the particle), the term
proportional to 3z2 dominates, Q0 is positive, and the particle is prolate shaped. If the charge
density is concentrated in the equatorial plane perpendicular to z axis, the term proportional to
r2 prevails, Q0 is negative and the particle is oblate in shape. The angular momentum selection
rule however, does not allow the spin 1

2
�

baryons to have any spectroscopic quadrupole moment.
Therefore, the �N 1

2
� � �3

2
� transition is studied to understand the quadrupole amplitudes in the

nucleon as well as �.
The spin and parity conservation in the �p transition require three contributing amplitudes,

magnetic dipole M1, the electric quadrupole moment E2, and the charge quadrupole moment C2
photon absorption amplitudes. The information on the intrinsic quadrupole moments can be ob-
tained from the measurements of E2 and C2 amplitudes [12, 13]. If the charge distribution of the
initial and final three-quark states were spherically symmetric, the E2 and C2 amplitudes of the
multipole expansion would be zero [14]. However, the recent experiments at JLAB, SELEX Col-
laboration reveal that although these quadrupole amplitudes are small compared to the dominant
magnetic dipole transition M1, they are clearly non zero [15]. More recently, the quadrupole transi-
tion moment (Q�N) measured by LEGS and Mainz Collaborations is �0�108�0�009�0�034 fm2

[16] and �0�0846�0�0033 fm2 [12], respectively. These measurements lead to the conclusion that
the nucleon and the � are intrinsically deformed.

3. General Parameterization method

In order to predict the sign as well as magnitude of deformation in the octet and decuplet
baryons, we have used the general parameterization (GP) method [17]. The charge quadrupole
operator composed of a two- and three-body operator terms in spin-flavor space is given as

Q � B
3


i�� j

ei
�
3iz j z�i �j

�
�C

3


i�� j ��k

ei
�
3 j zk z�j �k

�
� (3.1)

where the coefficients B and C are the constants to be determined from the experimental obser-
vations on charge radii and quadrupole moments. The quadrupole moments Q for the octet and
decuplet baryons can be calculated from Eq. (3.1) by evaluating matrix elements of the operator
corresponding to the three-quark spin-flavor wave functions (QB � �B�Q�B��. It is straightforward
to verify that


i�� j

ei�i � j� � 2J �
i

eii�3
i

ei � (3.2)
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
i�� j ��k

ei� j �k� � �3
i

ei�
i�� j

ei�i � j� � (3.3)

In Eq. (3.3), � sign holds for J � 3
2 and � sign for J � 1

2 states. Using the expectation value of
operator 2J �i eii between the baryon wavefunctions �B� in the initial and final states [18], the
operators in Eqs. (3.2) and (3.3) become

Operator i�� j ei�i � j� i�� j ��k ei� j �k�

J � 1
2 3i eiiz�3i ei �3i eiiz

J � 3
2 5i eiiz�3i ei 6i ei�5i eiiz

(3.4)

The expression for the quadrupole moment of the octet and decuplet baryons in Eq. (3.1) can
be expressed as

Q1�2 � 3B
i�� j

eiizjz�3C 
i��j��k

eijzkz���3B�3C�
i

eiiz�3B
i

ei � (3.5)

Q3�2 � 3B
i�� j

eiizjz�3C 
i��j��k

eijzkz���5B�5C�
i

eiiz��3B�6C�
i

ei � (3.6)

where i � �u�d�s� for any of the three quarks. Therefore, the calculation of quadrupole moment
reduces to the calculation of the flavor structure �i ei�, spin structure �i eiiz� and the tensor terms
�i eiiz jz and i ei jzkz� for a given baryon.

The spin and flavor structure of a given baryon can be calculated using the SU�6� spin-flavor
symmetry of the wave functions. The expectation value of the appropriate operators are expressed
as �ei � �B�i ei�B� � and �eiiz � �B�i eiiz�B�, where �B� is the baryon wave function and ei and i

are the charge and spin operators defined as


i

ei � 
q�u�d�s

nB
qq� 

q̄�ū�d̄�s̄

nB
q̄ q̄� nB

uu�nB
dd�nB

s s�nB
ū ū�nB

d̄ d̄�nB
s̄ s̄ � (3.7)


i

eiiz � 
q�u�d�s

�nB
q�q��nB

q�q�� � nB
u�u��nB

u�u��nB
d�d��nB

d�d��nB
s�s��nB

s�s� � (3.8)

Here nB
q �n

B
q̄ � is the number of quarks with charge q(q̄), and nB

q�(nB
q�) is the number of q quarks with

spin �(�). The tensor terms can be simplified and further reduced to the calculations of spin and
flavor structure as presented in Eq. (3.4).

For the case of octet baryons, Eq. (3.5) can be solved for the spin-flavor symmetric SU(6) octet
baryon wave function by using the operators defined in Eqs. (3.7) and (3.8). For ready reference,
the quadrupole moment of proton, neutron and � are expressed as

Qp � 3B��2u��d��2u�d��C��4u�d�4u��d�� � (3.9)

Qn � 3B��u��2d��u�2d��C�u�4d�u��4d�� � (3.10)

Q� � 3B��2u�� s��2u� s��C��4u� s�4u�� s�� � (3.11)

Similarly, the quadrupole moment of the decuplet baryon � can be calculated from Eq. (3.6) by
solving the matrix elements corresponding to the decuplet baryon wave function and by using the
operators defined in Eqs. (3.7) and (3.8). We have

Q� � B�2u��d��3�2u�d���C��3�2u�d��5�2u��d��� � (3.12)
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In the case of naive quark model (NQM), the calculations lead to u � 2
3 , d � � 1

3 , s � � 1
3 ,

u� � 2
3 , d� �� 1

3 , and s� �� 1
3 . The quadrupole moments of p, n, �, and � are now given as

Qp � 0 � Qn � 0 � Q� � 0 � Q� � 4B�2C � (3.13)

These results suggest that the octet baryons are spherically symmetric and there is no deformation.
However, the experimental results suggest that the nucleon is intrinsically deformed. Therefore,
there is a need to go beyond this model to include the effects of “quark sea”.

4. Chiral constituent quark model

The basic process in the CQM is the emission of a GB by a constituent quark which further
splits into a qq̄ pair as q� � GB0 � q

�

� � �qq̄
�

�� q
�

� � where qq̄
�

� q
�

constitute the “quark sea”
[2, 3, 4]. The effective Lagrangian describing interaction between quarks and a nonet of GBs is
L � g8q̄�q � where g8 is the coupling constant for the GBs. The GB field � is expressed in terms
of the quark contents as

� �

�
�� uuuū�uddd̄�usss̄ udud̄ usus̄

dudū duuū�dddd̄�dsss̄ dsds̄
susū sdsd̄ suuū�sddd̄�ssss̄

�
	
 � (4.1)

where

uu � dd �
1
2
�

6
�

3
� ss �

2
3
�

3
� us � ds � su � sd ��


3
�

3
�

du � ud ��
1
2
�

6
�

3
� ud � du � 1 � us � ds � su � sd �  � (4.2)

SU(3) symmetry breaking is introduced by considering Ms � Mu�d as well as by considering the
masses of GBs to be nondegenerate �MK� � M and M � � MK�� [2, 3, 4, 5]. The parameter a��

�g8�
2) denotes the transition probability of chiral fluctuation of the splitting u�d�� d�u������,

whereas 2a,  2a and  2a respectively, denote the probabilities of transitions of u�d�� s�K��o�,
u�d�s�� u�d�s�� , and u�d�s�� u�d�s�� �

.

Since the quadrupole moment operators for the spin 1
2 and spin 3

2 baryons involve the knowl-
edge of spin and flavor structure of baryons, it is important to mention here that redistribution of
flavor and spin take place among the “quark sea”. The modified flavor and spin structure of the
baryon in CQM due to the chiral symmetry breaking can be calculated by substituting for every
constituent quark

q� Pqq� ��q��2 and q� � Pqq�� ��q���2 � (4.3)

where Pq � 1�Pq is the transition probability of no emission of GB from any of the q quark,
��q��2 is the transition probability of the q quark, and ��q���2 is the probability of transforming
a q� quark [5].
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5. Results and Discussion

In order to calculate the quadrupole moments of the octet and decuplet baryons in the CQM,
we substitute Eq. (4.3) in Eqs. (3.5) and (3.6) . For example, on substituting Eq. (4.3) in Eqs.
(3.9), (3.10) and (3.11), the quadrupole moments of p, n, and � in CQM can now be expressed
as

Qp � Ba
�
6� 2�2 2��Ca

�
4�22� 2�2 2�

� (5.1)

Qn � Ba�3�32��C
a
3
�3�92�2 2�4 2� � (5.2)

Q� � Ba�6�2�2 2��C
a
3
�52�4 2�12�6 2� � (5.3)

From the above equations, we can directly estimate the effects of SU(3) symmetry breaking and
pion cloud in the quadrupole moments of the octet baryons. It is clear from the equations that, for
the non zero value of the GP parameters (B and C), there is a significant contribution of the CQM
parameters (a� � � ) to the quadrupole moments. Similarly, the quadrupole moment of � and
�0 in CQM, after substituting the contribution coming from the “quark sea”, can be expressed
as

Q� � B

�
4�

1
3
a
�
6� 2�2 2���C

�
2�

5
3
a
�
6� 2�2 2��

� (5.4)

Q�0 � B
a
3
��3�2�2 2��C

5a
3
��3�2�2 2� � (5.5)

Before giving the numerical results, we would like to discuss the input parameters involved
in the calculations of baryon quadrupole moments in CQM. The calculations involve the two
set of parameters, the ones corresponding to the GP method (B and C, where B � C), and other
corresponding to the CQM symmetry breaking (a,  ,  , and  ). In order to fix the values of
GP parameters, we have performed a fit to the available experimental values of the baryon charge
radii leading to B��0�0525 � C ��0�0158 � as the best fit. For the CQM parameters, we have
used the same set of parameters as discussed in our earlier publication [6]. The values used are
a� 0�12 �  � 0�45 �  � 0�45 �  ��0�15.

Using the above discussed set of parameters, we have calculated the quadrupole moments of
octet and decuplet baryons in CQM and results have been presented in Tables 1 and 2. In order
to understand the role of chiral symmetry breaking and SU(3) symmetry breaking, we have also
presented the results of NQM in the tables. Most of the models in literature are unable to estimate
the intrinsic quadrupole moment of the baryons. In the case of octet baryons there are indirect
evidences of small deformation in the nucleon. This deformation can easily be observed in our
results. For the case of decuplet baryons also, CQM is able to give a fairly good prediction of the
sign as well as magnitude of the quadrupole moments.

In order to understand the effect of three-quark contributing term and to make our calculations
more responsive, we have also presented the results by neglecting this contribution which can be
obtained by fixing the coefficient C � 0. From Table 1, it is clear that the results are affected to
a very small extent by the inclusion of three-quark term. The three-quark terms do not seem to
play any significant role in the case of octet baryons. However, in the case of decuplet baryons, the
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Baryon CQM

C = 0 C = �0.016

Qp �0.041 �0.032
Qn �0.016 �0.019
Q� �0.041 �0.032
Q� 0.010 0.009
Q0 �0.016 �0.012
Q0 �0.016 � 0.019
Q� 0.010 0.009

Table 1: Quadrupole moments of spin 1
2
�

baryons in CQM. The deformation is zero for all the cases in
NQM.

Baryon NQM CQM

C = 0 C = �0.016

Q�� �0.484 �0.398 �0.428
Q� �0.242 �0.196 �0.208
Q0 0.0 0.005 0.013
Q� 0.242 0.207 0.208
Q�� �0.242 �0.196 �0.208
Q�� 0.242 0.207 0.234
Q�0 0.0 0.005 0.013
Q�0 0.0 0.005 0.013
Q�� 0.242 0.207 0.234
Q� 0.315 0.296 0.296

Table 2: Quadrupole moments of spin 3
2
�

baryons in CQM.

results in Table 2 reveal that the inclusion of three-quark term increases the quadrupole moments
thus making them significant in this case. It is interesting to observe that the effect of three-quark
contribution is even more in the case of neutral baryons. For example, in the case of charged
baryons, the predictions are increased about 10% whereas for the case of neutral particles the
variation is more then 50% making the effect of three-quark term significant.

Since the electric quadrupole moment of the octet baryons as well as that of octet-decuplet
transitions are amenable to measurement, any experimental information would have important im-
plications for the basic tenets of CQM and the effects of SU(3) symmetry breaking.
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