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1. Introduction

Hadrons are composite objects. Their interaction with external probes.tikphotons is pa-
rameterized in terms of Lorentz-invariant functions. The most completeniafiion is contained
in the so-called generalized transverse-momentum dependent partdutiests (GTMDs). After
appropriate Fourier transform, the GTMDs can be interpreted as Wigngtase-space distribu-
tions, giving access to the correlations between quark momentum andarsagosition.

A brief introduction to the generalized quark-quark correlator functaefming the GTMDs
can be found in Section 2. On the light cone, this correlator can be writtdreas/erlap of light-
cone wave functions. We present in Section 3 the overlap restricted toréeegbark (3Q) sector
and specify the expression to a light-front constituent quark model Q¥and the chiral quark-
soliton model §QSM). In Section 4 it is explained why working on the light cone is mandatory
to develop a (quasi-)probabilistic interpretation of the distributions. Finalyapply in Section 5
the formalism presented in the previous sections to study the distribution ofperlaized quark
in an unpolarized proton.

2. General Quark-Quark Correlator

The maximum amount of information on the partonic structure of the nucleomtaiced in
the fully-unintegrated quark-quark correlawrfor a spin-/2 hadron [1, 2, 3, 4], defined as

d*z
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This correlator is a function of the initial and final hadron light-cone helichiend/\’, the average
hadron and quark four-momenk= (p’ 4+ p)/2 andk, and the four-momentum transfer to the
hadronA = p’ — p (see Fig. 1 for the kinematics). The superscfigtands for any element of the
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Figure 1: Kinematics for the fully-unintegrated quark-quark coatet.

basis{1, 5, y*, y"y5,ic#"} in Dirac space. A Wilson line/” = # (—3z, 5z|n) ensures the color
gauge invariance of the correlator, connecting the poirréz and%z viathe intermediary points
—%z+oo ‘n and%z+oo -n by straight lines. This induces a dependence of the Wilson line on the
light-cone directiom. Since any rescaled four-vecton with some positive parametercould be
used to specify the Wilson line, the correlator actually only depends on tirevéxtorN = '\,ﬂ—_zr?,
whereM is the hadron mass. The parametet sign(n®) gives the sign of the zeroth component
of n, i.e. indicates whether the Wilson line is future-pointing-€ +1) or past-pointingf = —1).
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The quark-quark correlators parametrized in terms of generalizechgdistnibutions (GPDs),
tranverse-momentum dependent parton distributions (TMDs) and fartor§a(FFs) correspond
to specific limits or projections of Eq. (2.1). These correlators have in conthrefact that the
quark fields are taken at the same light-cone tahe- 0. Let us then focus our attention on the
k™ -integrated version of Eq. (2.1)

WA (Pox kL, A, Nim) = [ kWA RKAN: )
_ 2.2)
1 /dz dZZL K-z /Al 1 1 (
= 2/(27‘[)38' (P, NW(=352T 7 Y(52)|p,\) )
where we used for a generic four-vectt = [at,a~,d, ] the light-cone components™ = (a° +
a®)/+/2 and the transverse componedts= (al,a?), andx = k* /P is the average fraction of
longitudinal momentum carried by the quark. A complete parametrization of tfestdh terms
of so-called generalized transverse momentum dependent parton distish{GTMDS) has been
achieved in [4]. The GTMDs can be considered asnttwgher distributionof GPDs and TMDs.
For example, the (T-even) distribution of unpolarized quarks in an uripethhadron is given by
the GTMDF, and is related to the GPB and the TMDf; as follows

H<X7 0751) = /dzki Ffl(X707Ri7RL 'AL7Bi)7 (2 3)
f1(x, k%) = F&(x,0,K2,0,0).

3. Overlap Representation

Following the lines of [5, 6], we obtain in the light-cone gaje= 0 an overlap representa-
tion for the correlator (2.2) at the twist-two level restricted to the 3Q Foctosec

3
W (PxKk,AN:n) = \ﬁ /dx (0P J3AK) Wiy (1 )LpAB(r)rlMM, 3.1)
ALA i=

where the integration measures are defined as
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Furthermore, in Eq. (3.1) the functigh(k) = 30(x) 8(x— x1) 8@ (k, —kq,) selects the active
quark average momentum (we choose to label the active quark withand the spectator quarks
with i = j = 2,3). The 3Q LCWFg(r) depends on the momentum coordindtes (i, ki1 ) of
the quarks relative to the hadron momentum (collectively indicated,bgnd the index3 which
stands for the set of the quark light-cone helicitigs}. The transition from the initial quark
light-cone helicityA; to the final oneA/ is described by a complex-valuedx2 matrix MAA
In particular, we have for the spectator quatk&i*i = 3%%. For the active quark, the matrix

1Quark flavor and color indices have been omitted for clarity. In the ssEconsidered here the flavor and color
of a given quark remain unchanged.
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MA1A depends on the twist-two Dirac structUfguiscz = {y", Y ¥6,i01ys,i0 2y} used in the
correlator, see.g.[7, 8, 9].

We choose to work in an infinite momentum frame such fais large,P, =0, andA-P=0.
The four-momenta involved are then

M2_|_£ M2+£
P=|P",———4_0,], A= |-28Pt & — 2 A |,
[ 2(1—&2)p 4 P g (3.3)
k= [Xp+,k_,RJ_:|, n= |:0,i1,6L] .

Note that the form used fam is not the most general one, but leads to an appropriate definition
of TMDs for SIDIS and DY processes. For the active and spectatarkgithe initial and final
momentum coordinates are then

- x+& - 1-xA, - x—& - 1-xA,
! <1+E’l 1+& 2)’ . (1—£’L+1—5 2)’

~ Xi - Xi A ~ Xi o Xj A
o= (dSeheries ) B (PeRo )
So far, the exact 3Q LCWF derived directly from the QCD Lagrangiarotsknown. Nev-

ertheless, we can try to reproduce the gross features of hadrotustrat low scales using con-
stituent quark models. Many models exist on the market based on the tohcepstituent quarks.
However only a few incorporate consistently relativistic effects. Weddwre on two such mod-
els: the light-front constituent quark model (LFCQM) [7, 8, 9] and thieattyuark-soliton model
(xQSM) [10, 11, 12, 13, 14]. The LCWFs used in LFCQM andxi@SM have a very similar
structure given by

(3.4)

3
Ung(r) = (1) 3 @R [ Dy (K), (3.5)
G =
whereW(r) is a global symmetric momentum wave functig 2% is theSU(6) spin-flavor wave

function, andD (k) is anSU(2) matrix connecting light-cone helicity and canonical spim;

D(K) = = . KrL=Kl+ik2 3.6
(k) K| <—KR Kz) RL (3.6)

The explicit expressions for the momentum wave functi$in) in Eq. (3.5) and the vectdf in
Eqg. (3.6) in LFCQM read

. 3 [ W03 N . Z - o B
qJ(r) - 2(2”) w (///OZ-FBZ)V’ KZ - m+y%07 KL =Ky, Kz = yﬂo w,
(3.7)

where./" is a normalization factor,Zy = 3; w is the free invariant massy is the free energy
of quarki, mis the constituent quark mass, aficy are model parameters fitted to reproduce the
anomalous magnetic moments of the nucleon [15]. On the other hand, withi@XB®M one has

3 —
_ < —hoy K <, — KL _ _
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where.Z\ is the soliton mas$ey is the energy of the discrete level in the spectrum, larjcare
the upper and lower components of the Dirac spinor describing this disevete
For further convenience we introduce the tensor correlator

1 — 1, —ypn
WHY = ST [CHWY] = 5 > ()M Wip, (3.9)
NN

wherewy, , = (W,[\Y;\},W,E,‘,’CIVS],W,Q,‘,’\HVS],W/[\Y;VS] andg* = (1,8) with ¢j the Pauli matrices. We
now use the LCWF given by Eq. (3.5) and write the overlap representaititve correlator tensor

WHY as

WHY(P,x,k,AN;n) = /[dx}g[dsz]3A(R) W W(r) Z (' r), (3.10)

_
V1-¢2
wherea/HV (r',r) stands for

M (r',r) = A0 (I2-13) +B[15 (13-01)" +15 (12-01)"] . (3.11)

In Eq. (3.11))f' = Oﬁ’o and the matriXOHV is given by

N

KK i(RxK) i (RxK) =i (R'xK)

X y z
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X

uv:ﬁ _, _, _
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(3.12)
i (K’ x K) —KjKx — Ky, —KJKy—KIK, R -K 4 2KIK,
z

The tensor correlatd/“Y in Eq. (3.9) has two indices. The indgxrefers to the transition in terms
of baryon light-cone helicity, while the indaxrefers to the transition in terms of the active quark
light-cone helicity. For example, the componewts® andW© correspond to the matrix elements
of the y™ andy "y operators in the case of an unpolarized hadron, respectively. Equati0)
gives the explicit expression for the tensor correlator in terms of thdagvef initial W(r) and
final W*(r') symmetric (instant-form) momentum wave functions with the tengd¥ (r’,r) for

a fixed mean momentum of the active quétk The tensore7“¥(r',r) contains the spin-flavor
structure derived from the overlap of the three initial and final quaiikeking into account the
possible couplings of the helicities of the active and spectator quarkseaadhgvhadron helicity,
the coefficientA andB in Eq. (3.11) for SU(6) spin-flavor wave functions are

Al=4, BY=1  Aj=-1 Bi=2 (3.13)

Furthermore, the matri®V in Eq. (3.12) describes the overlap of the initial and final quark states.
The columns are labeled by the indexwhich indicates the type of transition in terms of quark
light-cone helicity. The rows are labeled by the indexvhich indicates the type of transition in
terms of quark canonical spin. This matrix reducef'te- Oi“o for the spectator quarks, since in
this case the light-cone helicity is conserved.
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4. Impact Parameter Space

According to the standard interpretation [17, 18], the charge densitpeatentified with the
three-dimensional Fourier transform of the electric Sachs Form F&gtare. the matrix element
of the current density®

5y
pn=[ (gn‘;g & 197 Ge(QP). (4.1)

This identification is actually only valid in the nonrelativistic approximation. Tokwvout the
Fourier transform, one has to know the form factors for eW@fy In the Breit frame the latter is
identified with the three-momentum of the virtual pho@h= g2. This means that for every value
of Q% we have to move to a different frame and the charge density undergngallysa different
Lorentz contraction. Moreover, in order to have a probabilistic/chaegesity interpretation, the
number of particles should be conserved. However, in the Breit fratténgoprevents the photon
to create or annihilate a quark-antiquark pair.

All these problems are cured in the infinite momentum frame @itk O (the so-called Drell-
Yan-West frame). The photon is kinematically not allowed to change the nuadfilipiarks as
the light-cone momentum of a massive patrticle is strictly positive> 0. Moreover, the hadron
undergoes an extreme Lorentz contraction and looks like a pancakea @ydimensional charge
density [19, 20, 21, 22, 23] is then meaningful and can be identified wittvtbedimensional
Fourier transform of the matrix element df

. d2q eﬁiqL'BL
osb) = [ Gz g (PH %5 Ol %9, (4.2)

the photon virtuality being given b®? = g 2, ands denoting the hadron polarization.

5. Wigner Distributions

Wigner distributions are quantum phase-space distributions, containiihg albrrelations be-
tween position and momentum of the partons. Since Heisenberg’s uncepsirtiple forbids to
determine precisely both position and momentum of a quantum state, Wignerutistrfbhave
to be considered as quasi-probabilistic distributions. In the context oftgumefield theory, they
have already been discussed to some extent in the Breit frame [2]. Foraben mentioned in
the previous section, it is actually preferable to work in the infinite momentumefraBy Fourier
transformingF; in Eq.(2.3) with respect td, and integrating ovex, we obtain a (transverse)
phase-space distributign(k? ,k, -b, ,b%). The only two available transverse vectors kreand
b, . This means that for fixekl, - b, and|k_ | the distribution is axially symmetric, which is physi-
cally meaningful since there is not a preferred direction in the transpéase and a global rotation
arounde; should not have any effect on the distribution of unpolarized quarks inn@olarized
nucleon.

If we are now interested in the amplitude to find a fixed transverse moméaqtimthe trans-
verse plane, the distribution is not axially symmetric anymore due t@ thd | dependence. Al-
though the Wigner distributions can not be directly extracted from expetgrtey can be inferred
from the LCWFs parametrized on the basis of our phenomenological kdgevlef GPDs, TMDs
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Figure 2. Typical distribution (left) and equi-amplitude line (righof fixed k. = k. & in the transverse
plane for an unpolarized quark in an unpolarized nucleon.

o [1/GeVifm?]

Figure 3: Typical radial distributions in the transverse plane foedik, -b and|RL| of an unpolarized quark
in an unpolarized proton. Solid line corresponds to halhefup quark distribution. Dashed line corresponds
to the down quark distribution.

and form factors. As a starting point, we used #@SM and LFCQM which were introduced in
Section 3 and already tested in the calculation of several nucleon obke={a2, 13, 14, 15, 16].

In the case off, both models give the same qualitative picture with a larger distribution
amplitude wherk, | b, and smaller wherk, || b, (see Fig. 2). This can be understood with
naive semi-classical arguments. The radial momen([fqn BL)E)L of a quark has to decrease
rapidly in the periphery because of confinement. The polar momektumk, -b, )b, receives a
contribution from the orbital motion of the quark which can still be significarthenperiphery (in
an orbital motion, one does not need to reduce the momentum to avoid a gquage® This naive
picture also tells us that this phenomenon should become more pronoungedjago peripheral
regions (BL\ >>) and to high quark moment&m >>). This tendency is supported by both models.

It is also interesting to compare up and down quark distributions. Let usiig agairfq b,
and|RL|. The distribution being axially symmetric in the transverse plane, we focuseorathal
distribution, see Fig. 3. The up quark distribution has been divided by twodmparison with
the down quark distribution. Up quarks appear to be more concentrazaddathe center than
down quarks. For a neutron, we just have to exchange up and doavksquWe can therefore
see that the center of the neutron is negative, in agreement with the donadis¢ained using the
phenomenological neutron FFs [22].
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6. Summary

We used the framework of light-cone wave function to study generalizesuease-momentum
dependent parton distributions which parametrize the most generalquark correlator. These
distributions are connected to the Wigner or phase-space distributiongupieiFtransform. We
presented a general expression for the 3Q contribution to the gendrabzeslation functions
defining the GTMDs and applied it to a light-front constituent quark modeltae chiral quark-
soliton model. A non-trivial pattern for the phase-space distribution in thesyese plane for
an unpolarized quark in an unpolarized proton has been observadtarteted semi-classically
as related to the quark orbital angular momentum. We also confirmed the pitamegatively
charged core in the neutron. A presentation of the systematic study ofafjeed transverse-
momentum dependent parton distributions is in preparation.
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