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1. Introduction

The theory of hard exclusive processes, formulated withénfactorization approach to per-
turbative quantum chromodynamics (pQCD), is based on teeatqr product expansion (OPE),
the factorization theorems, and the pQCD evolution eqoatidn this context, the form factor for
the photon-pion transitiog*y* — 1%, with both photons being spacelike (with photon virtuaditie
Q%,Q35 > 0), was considered in [1, 2]. Since only one hadron is invbltke corresponding form
factor Fny*y*(Qz,Qg) has the simplest structure for the pQCD analysis among thee daaclusive
processes. The nonperturbative information about the ipiancumulated in the pion distribution
amplitude (DA)¢,(x) for the fractionx of the longitudinal pion momentp, carried by a quark.
Another simplification is, that the short-distance amplédor they*y* — ni° transition is, to lead-
ing order, just given by a single quark propagator. Findflg photon-pion form factor is related to
the axial anomaly, when both photons are real.

Experimentally, the easiest situation is, when one phoiduwiality is small and the other
large. Under these conditions, the form facks,(Q? 0) was measured a'e~ colliders by
CELLO [3], CLEO [4] Collaborations (Fig. 1). In the region lafrge virtualitiesQ? >> 1 Ge\?,
the pQCD factorization approach for exclusive processedigts to leading order in the strong

coupling constant [1, 2]
2f,

3Q2
whereJ = foldx>C1¢,T(x) is the inverse moment of the pion DA, arfig = 92.4 MeV. The factor
1/Q? reflects the asymptotic property of the quark propagatonecting two quark-photon ver-
tices (Fig. 2). The formula (1.1) is derived under the asgionpthat the QCD dynamics at large
distances (the factarf,) and the QCD dynamics at small distances (the fact@?}1is factorized.
Moreover, under this assumption, the asymptotics is rehalieady at the typical hadronic scale of
afew Ge\?. The pion DA¢(x), in addition, evolves in shape with the change of the rentizara
tion scale and asymptotically equai§s (x) = 6x(1 — x). From this follows the famous asymptotic
prediction (the straight dotted line in Fig. 1)

FO50Q0) -

y J; (1.1)

2f,

Recently, the BABAR collaboration published new data (Figfor the yy* — m° transition
form factor in the momentum transfer range from 4 to 40 &g5]. They found the following
puzzling result: AtQ? > 10 Ge\? the measured form factor multiplied by the photon virtyalit
QZFWY(QZ,O) exceeds the predicted asymptotic limit (1.2) and, more@asttinues to grow with
increasingQ?. This result is in strong contradiction to the predictiofishe standard QCD factor-
ization approach mentioned above. The BABAR data very wellam the older data obtained by
the CLEO collaboration in the small€? region, but extend to a much lagerf values.

FoRrPA(Q2,0) (1.2)

2. Nonlocal chiral quark model

We will analyze the photon-pion transition form factor iretgauged nonlocal chiral quark
model based on the picture of nontrivial QCD vacuum. Theaetifre feature of this model is,
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Figure 2: The triangle diagram in momentum
Figure 1: Photon-pion transition form factor in asymmetric kinenf3#d0-representation notation.
ics for the instanton model with parametég = 125 MeV,\ = 0.016
GeV2 (short pointed line)Mg = 300 MeV, A = 1.3 GeV-?(dash-
dotted line); and chiral model with parametdvly = 125 MeV, A\ =
0.0098 GeV? (solid line) andMy = 300 MeV, A = 0.639 GeV2
(dashed line). The straight dotted line is asymptotic ligtfi;. The
data points are from the CELLO [3] (empty squares), CLEO ¢ty
triangles) and BABAR (filled circles) [5] Collaborations.

that it interpolates the physics at large and small distand&t low energy, it enjoys the spon-
taneous breaking of chiral symmetry, the generation of §aahical quark mass, and it satis-
fies the basic low energy theorems. In particular, the comeamalization of the form factor by
the axial anomalyFr,(0,0) = 1/ (41 f) , and the Goldberger-Treiman relation, connecting the
quark-pion couplinggy; and the dynamical quark makk, with the physical pion decay constant
fr. fr = Mg/0qr. At energies much higher than the characteristic hadraritesit becomes the
theory of free massless quarks (in chiral limit).

Let us discuss the properties of the triangle diagram (Fjcat 2arge photon virtualities. To
this end, we do not need to completely specify the elementhefdiagram technique, which
are, in general, model dependent, but shall restrict otesebo rather general requirements. All
expressions will be treated in Euclidean space appropioatine process under consideration and
for the treatment of nonperturbative physics. The nonpeative quark propagator, dressed by the
interaction with the QCD vacuum, is

k+m(k?)
(k) = Dl (2.1)
The main requirement to the quark propagator is, that a¢lgugrk virtualitiesk? — o one has
k
S(k) — @ (2.2)

We assume also, that the dynamical quark mass is a functitve efuark virtualityk? and normal-
ized at zero as(0) = M. At large virtualities, it drops to the current quark mass, faster than
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any power ok 2 (see the discussion in [6])
m(k?) ~ Mq exp(— (kz)a> + Meurr, a>0. (2.3)

The denominator in (2.1) at large virtualitig$— oo is D (k%) — k2.
It is well known (see, e.qg., [7, 8]), that the change of therkymopagator leads to a modifica-
tion of the quark-photon vertex in order to preserve the Weakhhashi identity

My (k0K =k+0q) = —ieq[y* — AT, (kg kK =k+0q)]. (2.4)

The termAr , (g) is not uniquely defined, even within a particular model, esply its transverse
part. The importance of the full vertd, is, that the axial anomaly is reproduced [9], and thus
the photon-transition form factor correctly normalizedorttinately, due to the fact, thaf , is

not proportional taj, matrix, the corresponding amplitude has no projection tmtdeading twist
operator. Thus, this term is suppressed, if a large photduality passes through the vertex, and
hence does not participate in the leading asymptotics ofdhme factor. Its leading asymptotics
results exclusively from the local part of the photon vertex

r (koK =k+q) = —iegy*. (2:5)

Furthermore, we need the quark-pion vertex,

ra(p) = LytsraF (K3.K2), (2.6)

=1

wherek, andk_ are the quark and antiqguark momenta. In the following, thpartant feature
of the vertex functiorF (k7,k?) will be its behavior in the limit, when one quark virtualitg i
asymptotically large (e.gk? — ) and the otherKﬁ) remains finite. There are two possibilities,

F'(k3,k2) —0, (2.7)

and
FUT (K2.k2) —g(K}). (2.8)

Finally, one needs the projection of the pion state ontodhdihg twist operator

M (kg K =k+q) = Yy, (2.9)

This projection is determined by the matrix elemé@tay*y>12q| n® (p)) = —i2fzps, where the
constantf;psis (herenm’ (u) = dm(u) /du)

Ne [ F(u, 1
f,ZLPS:H/O du uD(ZL(uu))<m(u)—§un{(u)>, (2.10)

which coincides with the pion decay constdpbs in the Pagels-Stokar form [11].
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3. Asymptotics of pion-photon transition form factor
The invariant amplitude for the procegs/* — 1i° is given by

A(Vk (qlvgl) yk (q27£2) - no(p)) = _iezgu\/pasfg;qll)qglznv*y* (_qgv _q%) ) (31)

whereg!' are the photon polarization vectons? = m2,q2 = —Q2,03 = —Q3. In the effective
nonlocal quark-model considered above, one finds the toiish of the triangle diagram to the
invariant amplitude [10],

A(p?% a8, 03) = A% (p? 0, 3) + A" (p? of, 63)

where the first term contains only local part of the photortiees and the second term comprises
the rest.

As we discussed above, the leading asymptotics results thiertfocal part of the amplitude,
Al°c_ After taking the Dirac trace one obtains

Ao (122, ) — ezl\lC F (€ 12) m (k%) (€12, — E12000) — M(K2) €120,k + M (K3) 512pk’
62t,) @ D (k2)D (k2) D (k2)
(3.2)
wherep= 01+ 0o, =01 — G, kK» =K=£p/2, ks = (K: — ), andeixg, = Euva €} 5k o, etc.
In order to analyze the asymptotic properties of the fornofadet us transform the integral in
(3.2) formally into thear representation. Let us define for any functi®mf virtuality k?, decaying
at large virtuality as 1k? or faster, itsa representation (Laplace transform)

F (k) = /omdae“sz (@), F(KR)~f(a), (3.3)

whereF (kz) is the image of the originaf (). Then, the momentum integral in (3.2) is trans-
formed into the following expression for the form factor (ire chiral limit)

Flee (% = 0;Q%. Q%) —6n2f / (ABY) - iv(achp) (3.4)
[d(v)(oerp(a,B)+BGo,m(a,B))+vdm(v)G(a,B)],

whereA=a+f+yand[d(aBy)...= [y da [y dB [y dy... In (3.4) we introduce the following
notations

1 k2
5~ @), ggkzg ~ (@), (3.5)
F2.12) m(i) F (22

b(e)oie) ~C ) Touggpgey T 69

3.1 Asymmetric kinematics|

Let us now consider the asymmetric kinemat@s= Q? Q3 = 0. Then one has

i, 000 - g [ S le 9 37)
0 (8o, + B, £+ Y (. ).
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Let us first consider the model with the quark-pion vertexspssing the property (2.7). The
leading largeQ? behavior corresponds to the integral over smahd we get folQ? — o

) aGmo(a,B)+BGom(a,f)

N e a+p (22

a+p

IocI (0 Q 0

After change of variablea — XL, 3 — (1— X)L, we arrive at the representation

3 fr Jo D(xxQ@)TTV’ ’
where the pion distribution amplitude is

Ne

T Le?“Lpz(xGmo(xLxL)+xGo (XL,%L)), (3.9)
PSm

$n(x) =

Because in the considered cdsg(x) vanishes at the endpoints the actual asymptotics is in agree
ment with (1.1).

As we have already noted in Introduction the asymptotic biehg1.1) is not seen in the
BABAR data. Nevertheless, even for the case considerediiniple, it is possible to simulate
in some wide preasymptotic kinematical region a logarittatly enhanced behavior of the form
factor. This happens if one assumes that the pion DA enté818) is almost flap(x) ~ 1, i.e.
it is close to a constant everywhere except small vicinitgrrendpoints. Then, nonfactorizable
asymptotic coefficiend’ appears [12]

1
i :QZ/O dxﬁ. (3.10)

Let us consider some popular models of the nonperturbatiagkepropagator

1 1—exp(—k?/A?)
K2 K2

51 (3.11)
D (K?) = K* 4 (k). (3.12)

The first expression has the property of analytical confineifie3, 14]and the second one is typical
for chiral models. In quark models, where the first propag&aised, the parametér has the
meaning of a dynamical quark mass [1B]= Mg, with typical values oMy = 200— 300 MeV.
Inserting (3.11) into (3.10) it is possible to show that thading asymptotic behavior 8 —

Jic = In (Q?/Mg) + const (3.13)
This result (3.13) is very close to the result obtained in [Baussian and logarithmic models),

where the idea of flat pion distribution amplitude for ex@aon of the BABAR data was suggested
(see also [17, 18]).
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3.2 Asymmetric kinematics ||

Now, let us consider the model with the quark-pion vertexspssing the property (2.8). Itis
convenient to rearrange the terms in the pion form factonhénfollowing way

IocII (O Qz == 2f / GBV {Bfm( ) (3.14)

+GGm,0(a,B) ()+B[Go,m(0!,B) Fm(B)]
+YG(a,B)dm(y) +Brm(B)[d(y) — 1]
+B[d(y) — 1] [BGom(a,B) —rm(B)]},

where we introduce notations for the originals

9(k*)
o 1 Toae

~rm(a).

After standard manipulations with the integrals one olst#lire following largeQ? asymptotic
behavior a€)? — « transformed to the momentum representation [12]

S 1 Nc 00 2
Fasy (0:Q%,0) = et [/0 duim(g)(u)( Jin (Qu ) +A] (3.15)
0 1 1
A:/0 duD(u)/o dyrggﬂi {uF"" (u,yu) — [u+2m? (u)] g(yu)} . (3.16)

The asymptotic expression (3.15) generalizes the asymftwmula (1.1) for the case when the
standard factorization is violated.

4. Theinstanton and chiral models

In the previous section we considered the asymptotic behafithe pion transition form
factor. In order to calculate this form factor in the whol@éinatic region and compare with
available experimental data, we should further specifyroodel assumptions. Let us introduce
the momentum-dependent dynamical quark mass enteringdpagnator (2.1) as

m(k?) = Mqf? (k%) (4.1)

and take the profile functiori (k?) in a Gaussian fornf (k?) = exp(—Ak?). Thus, the model
contains two parameters, the dynamical quark nvisand the non-locality parametéx:

Next, we need to specify the nonlocal part of the vector wettiat does not participate in the
leading asymptotics, but is very important in implementing low energy theorems. The nonlocal
part of the vector vertex in (2.4) is taken of the form [7]

k/2 _ k2
AT, (kK =k+q) :(k+k’)u%. 4.2)

Further, we will consider two kinds of quark-pion vertexgR.the first given by

A (K2,K2) =Mqf (K) f (K?), (4.3)
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and the second by
1

F (kS K2) = SMq 2 (KE) + 12 (k)] . (4.4)
The first one is motivated by the instanton picture of QCD wvacy19] and the second by the
nonlocal chiral quark model advertised in [20]. We shallhie further discussion refer to vertex
function (4.3), which has th® — o behavior (2.7), as the instanton model, and to the othecehoi
(4.4), corresponding tk? — o behavior(2.8), as the chiral model.

9,(x)
¢,(x)

T T T T 1 T T T T J
0,0 02 04 06 08 10 00 02 04 06 08 10

9,(x)
9,(x)

T T T T ] T T T T )
00 02 04 06 08 10 00 02 04 08 08 10
x x
c) d)

Figure 3: Pion distribution amplitude for the instanton model withgraeters aMq = 125 MeV,A = 0.016 GeV2
and b)Mq = 300 MeV,A = 1.3 GeV-?; and chiral model with parameters g}, = 125 MeV, A = 0.0098 GeV2 and
d) Mg =300 MeV,A = 0.639 GeV 2.

In Fig. 3 the different shapes of the pion DA are shown as theycalculated within the
instanton and chiral models for the values of the dynamiaatkjmassvig = 300 MeV andV, =
125 MeV. The parameteX is defined to fit the pion decay constant in chiral lirfjit= 85 MeV. For
smallerMg the pion DA is close to a flat shape. For lardéy it is more sensitive to the nonlocal
part of the photon vertex and, in case of the instanton madektrongly suppressed in the vicinity
of endpoints.

5. The BABAR data within the instanton and chiral models

Let us consider the model predictions for the pion transifiarm factor in the asymmetric
kinematics ¢2 = Q2,3 = 0) in the region, where experimental data exist. In Fig. 1shew the
predictions for different values ®fly. For a quark mashly = 300 MeV the model dependence is
very strong and the theoretical curves are very far from K¥peemental points. The chiral model
overshoots the data, while the instanton model, in corred@ace with the standard factorization
scenario, shows the asymptoti¢Q behavior very early, already &° ~ 1 Ge\2. It is clearly
seen, that in order to describe the BABAR data, one has tdiekidynamical quark masé, ~ 125



Photon-pion transition form factor within nonlocal chirgark model A. Dorokhov

MeV. Then both models have an qualitatively good descriptwith some preference to the chiral
model.

The parameter space that describes the data up to 48 Bea¥ther narrow. For the chiral
model it isMq ~ 125+ 10 MeV, and for the instanton model ithd; ~ 130+ 5 MeV. Thus in this
region the instanton model simulate the logarithmicallipaarced behavior due to rather flat pion
DA. However, the further behavior of the form factor is ratdéferent for different models. The
instanton model finally reach its actual asymptoti©Q2 with the asymptotic coefficient given by

N @ uf( o f (yu) m(yuy)

J'zicM/d' /d' . 5.1

art3g, o D) Jo T DY o

For the chiral model the logarithmic growth continues for@d with the asymptotics a®? — o
following from (3.15)

Asx 20 Q X
7 (0,Q%,0) = Q212n2fn[ ( >+A}, (5.2)
% (u)
AX:/du /d' u—2mumu.

6. Conclusions

As it was stressed in Introduction the main problem to exptae BABAR data is the un-
stopped growth of the data points fRfFr, (Q?) that is inconsistent with the predict€Fy, (Q?) —
constant, following from simple asymptotic properties lué tmassless quark propagator. The key
point, to solve this problem, is to consider the propertidb® pion vertex functiorr (kf, k%) which
is the analog of the light-cone pion wave function. Theretas@ possibilities for the momentum
dependence of the pion vertex function. In the limit, whea qoark virtuality,kf, goes to infinity,
and the otherk3, remains finite, the vertex function may not necessarily tenzero. When it
goes to zero, the pion D&, (X), which is a functional of the pion vertex function, is zero fae t
endpoints $,(0) = ¢(1) = 0, with either strong or weak suppression in the neighbattafahe
endpointsx = 0 andx = 1. For the situation of strong suppression, the asymptot@? behavior
of the pion form factor in asymmetric kinematic®4= Q? Q3 = 0) is developed very early, in
contradiction with the BABAR data. For weak suppressiosdrbling a flat distribution ampli-
tude of the pion), the asymptotig/®? behavior is developed quite late, and can give a reasonable
description of the data in the BABAR region with aQd/Q? behavior in this region. For the other
case of non-vanishing pion vertex function in the abovet|itiie pion DA ¢,(x) is not zero at
the endpoints, and therefore the asymptotiQ4/iQ? behavior persists over the whole range, in
particular in the BABAR region.

Concluding we may say, that the BABAR data being unique iir thecuracy and covering
a very wide kinematical range, are consistent with conatiters based on nonperturbative QCD
dynamics and may indicate specific properties of the pioreviamiction.

7. Acknowledgments

The author acknowledges partial support from the Russiamdkation for Basic Research
projects nos. 10-02-08112 and 10-02-00368.



Photon-pion transition form factor within nonlocal chirgark model A. Dorokhov

References

[1] G. P. Lepage and S. J. Brodsky, Phys. Re®2, 2157 (1980).
[2] S.J.Brodsky and G. P. Lepage, Phys. Rg®4, 1808 (1981).
[3] CELLO, H. J. Behrenett al,, Z. Phys.C49, 401 (1991).
[4] CLEO, J. Gronbergt al,, Phys. RevD57, 33 (1998), hep-ex/9707031.
[5] The BABAR, B. Aubertet al., Phys. RevD80, 052002 (2009), 0905.4778.
[6] A.E. Dorokhov, Eur. Phys. L42, 309 (2005), hep-ph/0505007.
[7] J. Terning, Phys. RepD44, 887 (1991).
[8] R. D. Bowler and M. C. Birse, Nucl. PhyA582, 655 (1995), hep-ph/9407336.
[9] R. S. Plantand M. C. Birse, Nucl. Phy&703, 717 (2002), hep-ph/0007340.
[10] A. E. Dorokhov, JETP Letfr7, 63 (2003), hep-ph/0212156.
[11] H. Pagels and S. Stokar, Phys. Reg0, 2947 (1979).
[12] A. E. Dorokhov, arXiv:1003.4693 [hep-ph].
[13] G. V. Efimov and M. A. lvanov, Int. J. Mod. PhyA4, 2031 (1989).

[14] G. V. Efimov and M. A. lvanov,The Quark Confinement Model of Hadrgp4993), Bristol, UK:
IOP, 177 p.

[15] A. E. Radzhabov and M. K. Volkov, Eur. Phys Al19, 139 (2004), hep-ph/0305272.
[16] A. V. Radyushkin, Phys. Rei280, 094009 (2009), 0906.0323.

[17] A. E. Dorokhov, Phys. Part. Nucl. Leff, 229 (2010), 0905.4577.

[18] A. E. Dorokhov, Nucl. Phys. Proc. Supfb8, 190 (2010), 0909.5111.

[19] D. Diakonov and V. Y. Petrov, Nucl. PhyB272, 457 (1986).

[20] B. Holdom, J. Terning, and K. Verbeek, Phys. L&245, 612 (1990).

10



