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Recently, the BABAR collaboration reported the measurments of the photon-pion transition form

factorFπγγ∗
(
Q2

)
, which are in strong contradiction to the predictions of thestandard factoriza-

tion approach to perturbative QCD. In the present talk, based on a nonperturbative approach to

the QCD vacuum and on rather universal assumptions, we show that there exists two asymptotic

regimes for the pion transition form factor. One regime withasymptoticsFπγ∗γ
(
Q2

)
∼ 1/Q2

corresponds to the result of the standard QCD factorizationapproach, while other violates the

standard factorization and leads to asymptotic behavior asFπγ∗γ
(
Q2

)
∼ ln

(
Q2

)
/Q2. Further-

more, considering specific nonlocal chiral quark models, wefind the region of parameters, where

the existing CELLO, CLEO and BABAR data for the pion transition form factor are successfully

described.
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1. Introduction

The theory of hard exclusive processes, formulated within the factorization approach to per-
turbative quantum chromodynamics (pQCD), is based on the operator product expansion (OPE),
the factorization theorems, and the pQCD evolution equations. In this context, the form factor for
the photon-pion transitionγ∗γ∗ → π0, with both photons being spacelike (with photon virtualities
Q2

1,Q
2
2 > 0), was considered in [1, 2]. Since only one hadron is involved, the corresponding form

factor Fπγ∗γ∗(Q2
1,Q

2
2) has the simplest structure for the pQCD analysis among the hard exclusive

processes. The nonperturbative information about the pionis accumulated in the pion distribution
amplitude (DA)ϕπ (x) for the fractionx of the longitudinal pion momentap, carried by a quark.
Another simplification is, that the short-distance amplitude for theγ∗γ∗ → π0 transition is, to lead-
ing order, just given by a single quark propagator. Finally,the photon-pion form factor is related to
the axial anomaly, when both photons are real.

Experimentally, the easiest situation is, when one photon virtuality is small and the other
large. Under these conditions, the form factorFπγ∗γ(Q2,0) was measured ate+e− colliders by
CELLO [3], CLEO [4] Collaborations (Fig. 1). In the region oflarge virtualitiesQ2 >> 1 GeV2,
the pQCD factorization approach for exclusive processes predicts to leading order in the strong
coupling constant [1, 2]

FpQCD
πγ∗γ (Q2,0) =

2 fπ
3Q2 J, (1.1)

whereJ =
∫ 1

0 dxx−1ϕπ (x) is the inverse moment of the pion DA, andfπ = 92.4 MeV. The factor
1/Q2 reflects the asymptotic property of the quark propagator connecting two quark-photon ver-
tices (Fig. 2). The formula (1.1) is derived under the assumption, that the QCD dynamics at large
distances (the factorJ fπ ) and the QCD dynamics at small distances (the factor 1/Q2) is factorized.
Moreover, under this assumption, the asymptotics is reached already at the typical hadronic scale of
a few GeV2. The pion DAϕπ (x), in addition, evolves in shape with the change of the renormaliza-
tion scale and asymptotically equalsϕAs

π (x) = 6x(1−x). From this follows the famous asymptotic
prediction (the straight dotted line in Fig. 1)

FpQCD,As
πγ∗γ (Q2,0) =

2 fπ
Q2 . (1.2)

Recently, the BABAR collaboration published new data (Fig.1) for theγγ∗ → π0 transition
form factor in the momentum transfer range from 4 to 40 GeV2 [5]. They found the following
puzzling result: AtQ2 > 10 GeV2 the measured form factor multiplied by the photon virtuality
Q2Fπγ∗γ(Q2,0) exceeds the predicted asymptotic limit (1.2) and, moreover, continues to grow with
increasingQ2. This result is in strong contradiction to the predictions of the standard QCD factor-
ization approach mentioned above. The BABAR data very well match the older data obtained by
the CLEO collaboration in the smallerQ2 region, but extend to a much lagerQ2 values.

2. Nonlocal chiral quark model

We will analyze the photon-pion transition form factor in the gauged nonlocal chiral quark
model based on the picture of nontrivial QCD vacuum. The attractive feature of this model is,
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Figure 1: Photon-pion transition form factor in asymmetric kinemat-

ics for the instanton model with parametersMq = 125 MeV,Λ = 0.016

GeV−2 (short pointed line),Mq = 300 MeV, Λ = 1.3 GeV−2(dash-

dotted line); and chiral model with parametersMq = 125 MeV, Λ =

0.0098 GeV−2 (solid line) andMq = 300 MeV, Λ = 0.639 GeV−2

(dashed line). The straight dotted line is asymptotic limit2 fπ . The

data points are from the CELLO [3] (empty squares), CLEO [4] (empty

triangles) and BABAR (filled circles) [5] Collaborations.
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Figure 2: The triangle diagram in momentum

andα-representation notation.

that it interpolates the physics at large and small distances. At low energy, it enjoys the spon-
taneous breaking of chiral symmetry, the generation of the dynamical quark mass, and it satis-
fies the basic low energy theorems. In particular, the correct normalization of the form factor by
the axial anomalyFπγγ(0,0) = 1/

(
4π2 fπ

)
, and the Goldberger-Treiman relation, connecting the

quark-pion couplinggqπ and the dynamical quark massMq with the physical pion decay constant
fπ : fπ = Mq/gqπ . At energies much higher than the characteristic hadronic scale, it becomes the
theory of free massless quarks (in chiral limit).

Let us discuss the properties of the triangle diagram (Fig. 2) at large photon virtualities. To
this end, we do not need to completely specify the elements ofthe diagram technique, which
are, in general, model dependent, but shall restrict ourselves to rather general requirements. All
expressions will be treated in Euclidean space appropriatefor the process under consideration and
for the treatment of nonperturbative physics. The nonperturbative quark propagator, dressed by the
interaction with the QCD vacuum, is

S(k) =
k̂+m

(
k2

)

D(k2)
. (2.1)

The main requirement to the quark propagator is, that at large quark virtualitiesk2 → ∞ one has

S(k) →
k̂
k2 . (2.2)

We assume also, that the dynamical quark mass is a function ofthe quark virtualityk2 and normal-
ized at zero asm(0) = Mq. At large virtualities, it drops to the current quark massmcurr faster than
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any power ofk−2 (see the discussion in [6])

m
(
k2) ∼ Mqexp

(
−

(
k2)a

)
+mcurr, a > 0. (2.3)

The denominator in (2.1) at large virtualitiesk2 → ∞ is D
(
k2

)
→ k2.

It is well known (see, e.g., [7, 8]), that the change of the quark propagator leads to a modifica-
tion of the quark-photon vertex in order to preserve the Ward-Takahashi identity

Γµ
(
k,q,k′ = k+q

)
= −ieq

[
γµ −∆Γµ

(
k,q,k′ = k+q

)]
. (2.4)

The term∆Γµ (q) is not uniquely defined, even within a particular model, especially its transverse
part. The importance of the full vertexΓµ is, that the axial anomaly is reproduced [9], and thus
the photon-transition form factor correctly normalized. Fortunately, due to the fact, that∆Γµ is
not proportional toγµ matrix, the corresponding amplitude has no projection ontothe leading twist
operator. Thus, this term is suppressed, if a large photon virtuality passes through the vertex, and
hence does not participate in the leading asymptotics of theform factor. Its leading asymptotics
results exclusively from the local part of the photon vertex

ΓAs
µ

(
k,q,k′ = k+q

)
= −ieqγµ . (2.5)

Furthermore, we need the quark-pion vertex,

Γa
π (p) =

i
fπ

γ5τaF
(
k2
+,k2

−

)
, (2.6)

wherek+ andk− are the quark and antiquark momenta. In the following, the important feature
of the vertex functionF

(
k2
+,k2

−

)
will be its behavior in the limit, when one quark virtuality is

asymptotically large (e.g.,k2
− → ∞) and the other (k2

+) remains finite. There are two possibilities,

F f (
k2
+,k2

−

)
→ 0, (2.7)

and

Fu f (k2
+,k2

−

)
→ g

(
k2
+

)
. (2.8)

Finally, one needs the projection of the pion state onto the leading twist operator

Γ5,As
µ

(
k,q,k′ = k+q

)
= γµγ5. (2.9)

This projection is determined by the matrix element
〈
0
∣∣qγµγ5τaq

∣∣πa (p)
〉

= −i2 fπ,PS, where the
constantfπ,PS is (herem′ (u) = dm(u)/du)

f 2
π,PS=

Nc

4π2

∫ ∞

0
du u

F (u,u)

D2(u)

(
m(u)−

1
2

um′ (u)

)
, (2.10)

which coincides with the pion decay constantfπ,PS in the Pagels-Stokar form [11].
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3. Asymptotics of pion-photon transition form factor

The invariant amplitude for the processγ∗γ∗ → π0 is given by

A
(
γ∗ (q1,ε1)γ∗ (q2,ε2) → π0 (p)

)
= −ie2εµνρσ ε µ

1 εν
2 qρ

1qσ
2 Fπγ∗γ∗

(
−q2

1,−q2
2

)
, (3.1)

whereε µ
i are the photon polarization vectors,p2 = m2

π ,q2
1 = −Q2

1,q
2
2 = −Q2

2. In the effective
nonlocal quark-model considered above, one finds the contribution of the triangle diagram to the
invariant amplitude [10],

A
(
p2;q2

1,q
2
2

)
= Aloc(

p2;q2
1,q

2
2

)
+Anonloc(p2;q2

1,q
2
2

)
,

where the first term contains only local part of the photon vertices and the second term comprises
the rest.

As we discussed above, the leading asymptotics results fromthe local part of the amplitude,
Aloc. After taking the Dirac trace one obtains

Aloc(
p2;q2

1,q
2
2

)
=

e2Nc

6π2 fπ

∫
d4k
π2 F(k2

+,k2
−)

m
(
k2
+

)(
ε12kq2 − ε12q1q2

)
−m

(
k2
−

)
ε12q1k +m

(
k2

3

)
ε12pk

D
(
k2
+

)
D

(
k2
−

)
D

(
k2

3

) ,

(3.2)
wherep = q1 +q2, q = q1−q2, k± = k± p/2, k3 = (k+−q1), andε12kq2 = εµνλρε µ

1 εν
2 kλ qρ

2 , etc.
In order to analyze the asymptotic properties of the form factor, let us transform the integral in

(3.2) formally into theα representation. Let us define for any functionF of virtuality k2, decaying
at large virtuality as 1/k2 or faster, itsα representation (Laplace transform)

F
(
k2) =

∫ ∞

0
dαe−αk2

f (α) , F
(
k2) ∼ f (α) , (3.3)

whereF
(
k2

)
is the image of the originalf (α). Then, the momentum integral in (3.2) is trans-

formed into the following expression for the form factor (inthe chiral limit)

F loc
πγ∗γ∗

(
p2 = 0;Q2

1,Q
2
2

)
=

Nc

6π2 fπ

∫
d(αβγ)

∆3 e−
1
∆ γ(αQ2

1+βQ2
2) (3.4)

· [d(γ)(αGm,0(α ,β )+ βG0,m(α ,β ))+ γdm(γ)G(α ,β )] ,

where∆ = α +β + γ and
∫

d(αβγ) ... =
∫ ∞

0 dα
∫ ∞

0 dβ
∫ ∞

0 dγ ... In (3.4) we introduce the following
notations

1
D(k2)

∼ d(α) ,
m

(
k2

)

D(k2)
∼ dm(α) , (3.5)

F(k2
+,k2

−)

D
(
k2
+

)
D

(
k2
−

) ∼ G(α ,β ) ,
m

(
k2
+

)
F(k2

+,k2
−)

D
(
k2
+

)
D

(
k2
−

) ∼ Gm,0(α ,β ) . (3.6)

3.1 Asymmetric kinematics I

Let us now consider the asymmetric kinematicsQ2
1 = Q2,Q2

2 = 0. Then one has

F loc
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫
d(αβγ)

∆3 e−
γα
∆ Q2

(3.7)

· [d(γ) (αGm,0(α ,β )+ βG0,m(α ,β ))+ γdm(γ)G(α ,β )] .
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Let us first consider the model with the quark-pion vertex possessing the property (2.7). The
leading largeQ2 behavior corresponds to the integral over smallγ and we get forQ2 → ∞

F loc,I
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫
d(αβ )

(α + β )3

αGm,0(α ,β )+ βG0,m(α ,β )

D
(

αQ2

α+β

) .

After change of variablesα → xL,β → (1−x)L, we arrive at the representation

F loc,I
πγ∗γ

(
0;Q2,0

)
=

2
3

f 2
PS,π

fπ

∫ 1

0
dx

1
D(xQ2)

ϕ f
π (x) , (3.8)

where the pion distribution amplitude is

ϕπ (x) =
Nc

4π2 f 2
PS,π

∫ ∞

0

dL
L

exxLp2
(xGm,0 (xL,xL)+xG0,m(xL,xL)) , (3.9)

Because in the considered caseϕπ (x) vanishes at the endpoints the actual asymptotics is in agree-
ment with (1.1).

As we have already noted in Introduction the asymptotic behavior (1.1) is not seen in the
BABAR data. Nevertheless, even for the case considered, in principle, it is possible to simulate
in some wide preasymptotic kinematical region a logarithmically enhanced behavior of the form
factor. This happens if one assumes that the pion DA entering(3.8) is almost flatϕπ (x) ≈ 1, i.e.
it is close to a constant everywhere except small vicinity near endpoints. Then, nonfactorizable
asymptotic coefficientJ f appears [12]

JL = Q2
∫ 1

0
dx

1
D(xQ2)

. (3.10)

Let us consider some popular models of the nonperturbative quark propagator

1
D(k2)

=
1−exp

(
−k2/Λ2

)

k2 (3.11)

D
(
k2) = k2 +m2(k) . (3.12)

The first expression has the property of analytical confinement [13, 14]and the second one is typical
for chiral models. In quark models, where the first propagator is used, the parameterΛ has the
meaning of a dynamical quark mass [15],Λ ≡ Mq, with typical values ofMq = 200− 300 MeV.
Inserting (3.11) into (3.10) it is possible to show that the leading asymptotic behavior asQ2 → ∞

JL
AC = ln

(
Q2/M2

q

)
+const, (3.13)

This result (3.13) is very close to the result obtained in [16] (Gaussian and logarithmic models),
where the idea of flat pion distribution amplitude for explanation of the BABAR data was suggested
(see also [17, 18]).

6
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3.2 Asymmetric kinematics II

Now, let us consider the model with the quark-pion vertex possessing the property (2.8). It is
convenient to rearrange the terms in the pion form factor in the following way

F loc,II
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫
d(αβγ)

∆3 e−
γα
∆ Q2

{β rm(β ) (3.14)

+αGm,0(α ,β )d(γ)+ β [G0,m(α ,β )− rm(β )]

+γG(α ,β )dm(γ)+ β rm(β ) [d(γ)−1]

+β [d(γ)−1] [βG0,m(α ,β )− rm(β )]} ,

where we introduce notations for the originals

g
(
k2

)

D(k2)
∼ r (α) ,

m
(
k2

)
g
(
k2

)

D(k2)
∼ rm(α) .

After standard manipulations with the integrals one obtains the following large-Q2 asymptotic
behavior asQ2 → ∞ transformed to the momentum representation [12]

FAs,II
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

6π2 fπ

[∫ ∞

0
du

m(u)g(u)

D(u)
ln

(
Q2

u

)
+A

]
, (3.15)

A =

∫ ∞

0
du

1
D(u)

∫ 1

0
dy

m(yu)
D(yu)

{
uFu f (u,yu)−

[
u+2m2(u)

]
g(yu)

}
. (3.16)

The asymptotic expression (3.15) generalizes the asymptotic formula (1.1) for the case when the
standard factorization is violated.

4. The instanton and chiral models

In the previous section we considered the asymptotic behavior of the pion transition form
factor. In order to calculate this form factor in the whole kinematic region and compare with
available experimental data, we should further specify ourmodel assumptions. Let us introduce
the momentum-dependent dynamical quark mass entering the propagator (2.1) as

m
(
k2) = Mq f 2(

k2) (4.1)

and take the profile functionf
(
k2

)
in a Gaussian formf

(
k2

)
= exp

(
−Λk2

)
. Thus, the model

contains two parameters, the dynamical quark massMq and the non-locality parameterΛ.

Next, we need to specify the nonlocal part of the vector vertex that does not participate in the
leading asymptotics, but is very important in implementingthe low energy theorems. The nonlocal
part of the vector vertex in (2.4) is taken of the form [7]

∆Γµ
(
k,q,k′ = k+q

)
=

(
k+k′

)
µ

m
(
k′2

)
−m

(
k2

)

k′2−k2 . (4.2)

Further, we will consider two kinds of quark-pion vertex (2.6), the first given by

FI
(
k2
+,k2

−

)
= Mq f

(
k2
+

)
f
(
k2
−

)
, (4.3)

7



P
o
S
(
L
C
2
0
1
0
)
0
6
1

Photon-pion transition form factor within nonlocal chiralquark model A. Dorokhov

and the second by

Fχ
(
k2
+,k2

−

)
=

1
2

Mq
[

f 2(
k2
+

)
+ f 2(

k2
−

)]
. (4.4)

The first one is motivated by the instanton picture of QCD vacuum [19] and the second by the
nonlocal chiral quark model advertised in [20]. We shall in the further discussion refer to vertex
function (4.3), which has thek2 → ∞ behavior (2.7), as the instanton model, and to the other choice
(4.4), corresponding tok2 → ∞ behavior(2.8), as the chiral model.

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

(x
)

x
0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

(x
)

x
d)

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

(x
)

x
c)

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

(x
)

x  
d)

Figure 3: Pion distribution amplitude for the instanton model with parameters a)Mq = 125 MeV,Λ = 0.016 GeV−2

and b)Mq = 300 MeV,Λ = 1.3 GeV−2; and chiral model with parameters c)Mq = 125 MeV,Λ = 0.0098 GeV−2 and

d) Mq = 300 MeV,Λ = 0.639 GeV−2.

In Fig. 3 the different shapes of the pion DA are shown as they are calculated within the
instanton and chiral models for the values of the dynamical quark massMq = 300 MeV andMq =

125 MeV. The parameterΛ is defined to fit the pion decay constant in chiral limitfπ = 85 MeV. For
smallerMq the pion DA is close to a flat shape. For largerMq it is more sensitive to the nonlocal
part of the photon vertex and, in case of the instanton model,it is strongly suppressed in the vicinity
of endpoints.

5. The BABAR data within the instanton and chiral models

Let us consider the model predictions for the pion transition form factor in the asymmetric
kinematics (q2

1 = Q2,q2
2 = 0) in the region, where experimental data exist. In Fig. 1, weshow the

predictions for different values ofMq. For a quark massMq = 300 MeV the model dependence is
very strong and the theoretical curves are very far from the experimental points. The chiral model
overshoots the data, while the instanton model, in correspondence with the standard factorization
scenario, shows the asymptotic 1/Q2 behavior very early, already atQ2 ∼ 1 GeV2. It is clearly
seen, that in order to describe the BABAR data, one has to takethe dynamical quark massMq ≈ 125

8
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MeV. Then both models have an qualitatively good description, with some preference to the chiral
model.

The parameter space that describes the data up to 40 GeV2 is rather narrow. For the chiral
model it isMq ≈ 125±10 MeV, and for the instanton model it isMq ≈ 130±5 MeV. Thus in this
region the instanton model simulate the logarithmically enhanced behavior due to rather flat pion
DA. However, the further behavior of the form factor is rather different for different models. The
instanton model finally reach its actual asymptotic 1/Q2 with the asymptotic coefficient given by

JI =
Nc

4π2 f 2
PS,π

Mq

∫ ∞

0
du

u f (u)

D(u)

∫ 1

0
dy

f (yu)m(yu)
D(yu)

. (5.1)

For the chiral model the logarithmic growth continues for all Q2 with the asymptotics asQ2 → ∞
following from (3.15)

FAs,χ
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

12π2 fπ

[∫ ∞

0
du

m2 (u)

D(u)
ln

(
Q2

u

)
+Aχ

]
, (5.2)

Aχ =
∫ ∞

0
du

m(u)

D(u)

∫ 1

0
dy

m(yu)
D(yu)

[u−2m(u)m(yu)] .

6. Conclusions

As it was stressed in Introduction the main problem to explain the BABAR data is the un-
stopped growth of the data points forQ2Fπγγ∗

(
Q2

)
that is inconsistent with the predictedQ2Fπγγ∗

(
Q2

)
→

constant, following from simple asymptotic properties of the massless quark propagator. The key
point, to solve this problem, is to consider the properties of the pion vertex functionF(k2

1,k
2
2) which

is the analog of the light-cone pion wave function. There aretwo possibilities for the momentum
dependence of the pion vertex function. In the limit, when one quark virtuality,k2

1, goes to infinity,
and the other,k2

2, remains finite, the vertex function may not necessarily tend to zero. When it
goes to zero, the pion DAϕπ(x), which is a functional of the pion vertex function, is zero at the
endpoints,ϕπ(0) = ϕπ(1) = 0, with either strong or weak suppression in the neighborhood of the
endpointsx = 0 andx = 1. For the situation of strong suppression, the asymptotic 1/Q2 behavior
of the pion form factor in asymmetric kinematics (Q2

1 = Q2,Q2
2 = 0) is developed very early, in

contradiction with the BABAR data. For weak suppression (resembling a flat distribution ampli-
tude of the pion), the asymptotic 1/Q2 behavior is developed quite late, and can give a reasonable
description of the data in the BABAR region with a lnQ2/Q2 behavior in this region. For the other
case of non-vanishing pion vertex function in the above limit, the pion DAϕπ(x) is not zero at
the endpoints, and therefore the asymptotic lnQ2/Q2 behavior persists over the whole range, in
particular in the BABAR region.

Concluding we may say, that the BABAR data being unique in their accuracy and covering
a very wide kinematical range, are consistent with considerations based on nonperturbative QCD
dynamics and may indicate specific properties of the pion wave function.
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