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1. Covariant formulation of Light-front dynamics

For many years the knowledge and description of the structure of elemypgmatdicles have
been of great interest in particle physics. Many theoretical framewadrkady exist (QCD sum
rules, lattice QCD, etc.), all of them have their intrinsic theoretical limitations. réleoto have
more physical insights into the internal structure of hadrons we havetiitig sely on constituent
quark models. For the pion description these models should be relativistic.

The first requirement to build a relativistic dynamical theory is that it shoeliehariant under
the ten generators of the Poincaré group. Following this requirementfthhras of dynamics have
been derived by Dirac: the instant form, the point form and the framh fdVe will concentrate in
this study on the front form, namely on its explicitly covariant form (CLFD) [Ihe orientation
of the light front plane is here characterized by an arbitrary light like f@atorw with w-x = cte
andw? = 0. This approach is a generalization of the standard light-front dynaidi)([2]. The
latter can easily be recovered with a special choice of the light-fronttatien,w = (1,0,0,—1).

The two-body wave functioﬁ)@}la2 can be parametrized in terms of various sets of kinematical
variables. Herad is the projection of the total angular momentum of the system ondles in the
rest frame and; is the spin projections of the partidlén the corresponding rest system. In order
to make a close connection to the non-relativistic case, it is convenient tducidhe following
variables [3] defined by

P ki
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whereL1(2) is the (inverse) Lorentz boost of momentugd. We denote byk; (k;) the mo-
mentum of the constituent antiquark (quark). The momerkurorresponds, in the frame where
k1 + ko =0, to the usual relative momentum between the two particles. The unit vectonre-
sponds, in this frame, to the spatial directionu@fThe second set of variables we shall also use in
the following is the usual light-front set of coordinatesR ; ) which is defined by

Ot)~k1
X wp’ 1= KL —XpP,
whereR; is decomposed into its spatial components parallel and perpendicular toebgatirof
the light-front,R; = (Ro,R.,R|). We have by definitiorR;- = 0, and thusRé = —R2. In the

reference frame wheme, =0, R is identical to the usual transverse momentum

2. The pion wave function

The covariance of our approach allows to write down explicitly the gersgial structure of
the two-body bound state. For a pseudoscalar particle of momentaomposed of an antiquark
and a quark of equal massit takes the form

_ 1_ 1
Py = ﬁUoz(kZ) <A1m+A2cf)p> Vs Vo, (K1) (2.1)
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wherev(k;) andu(kz) are the usual Dirac spinors, ald andA; are the two scalar components
of the pion wave function. For simplicity, we shall also call wave functionsete/o spin compo-
nents. They depend on two scalar variables, which we shall choojxel%). The representation
of this wave function in terms of the variablksndn is given by

1 io-[nxk
@10, = oy (3147 g2 e 22)

0102 = \/é
wherew; are Pauli spinors angh » are the two scalar components of the pion wave function in this
representation. One can easily expr@ss in terms ofg; ». We get

28, m k
= KM+ —A o= —— A 2.3
01 m 1+£k 2,02 & 2 (2.3)

We would like to stress that the decomposition (2.1) is a very general ore $pin zero
particle composed of two spin 1/2 constituents. In the non-relativistic limit, 7 — 0 and the
componenty; (k2,k.n) only survives and depends on a single scalar variblén our phenomeno-
logical analysis, we shall therefore start from a non-relativistic corap'og?, given by a simple
parametrization. We shall use in the following either a gaussian wave furgitien by

91(k?) = a exp(~B k?) , (2.4)
or a power-law wave function written as
0/12\ _ a

wherea andf3 are two parameters to be determined from experimental data and the conéition o
normalization. The latter writes [3]

' Y,
1=y / dD @A, DA, (2.6)
0102
wheredD is an invariant phase space element which can take the following formsndieg on
the kinematical variables which are used

3 3 2
4D — 1 d>ky _ 1 %: 1 dRde. 2.7)
(2m)3 (1—x)2&, (2m)32g  (2m)32x(1—x)
It is necessary to correct the nonrelativistic component in some way @t twdncorporate in
a full relativistic framework the high momentum tail given by the one-gluoarge mechanism.
We shall achieve this using perturbation theory, starting from the zerd#r arave functiorgcl’.
The (eigenvalue) equation we start from to calculate the bound state wastoh is repre-
sented schematically in Fig. (1). This equation writes, in the case of ggipdrticles [3]
d3k4 dr’

Tho)rov(ke) = [ o s o 10K~ P)@(wK)

xu(ke) [vu (o +m)To(m— ko), | K V(ke) - (2.8)

It is written in terms of the two-body vertex functidn defined by [4]

U, (ko) 2Vay (k1) = (s~ M) @G, | (2.9)
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Figure 1: Calculation of radiative corrections to the two-body wawmadtion.

2 2
Rijmz + R(ﬂf;z . The mass of the pion is denoted lly;.

The kernelK*V, including the appropriate color factor, can be writterK&$ = —g“"%‘gzji/
in the Feynman gauge, wher# is the usual one-gluon exchange kernel. The quark gluon coupling
constant is denoted ly with g = 47as. In order to incorporate the correct short range properties
of the quark-antiquark interaction from asymptotic freedom, we shalliden# the following a
running coupling constarts(K?), whereK? is the off-shell momentum squared of the gluon. Itis
given byK? = 1/.#". We choose a simple parametrization which gives, in the IKrgkmit, the
known behavior given by perturbative QCD. We take

with s=

ag

11 2ny K2[4+A2cp |
1+ —2—adlog | —77 >
an s-09 /\éco

as(K?) = (2.10)

At smallK?, it is given by the parameter? which should be of the order of 1. We choage= 2
and/\QCD =220 MeV.

In order to calculate the relativistic corrections we proceed as follows. siiistitute the
nonrelativistic components to the r.h.s. of (2.8) They are calculated froth ¢2 (2.5) by means
of (2.3) withg; = ¢f andg, = g9 = 0. Then we solve (2.8) and obtain the relativistic components
0A1 » substituted to the l.h.s. The total components are then given by

A1’2 = Acl)’z + 5A172.

3. Physical observables

The aim of our work is to get an overall good description of the followinghgbservables:
pion decay constant, electromagnetic and transition form factors angectzatius.

3.1 Decay constant

The pseudoscalar decay amplitude is given by the diagram in Fig. (2)g b&rdiagrammatic

Figure 2. Decay amplitude of the pion.
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rules of CLFD [3], we can calculate the decay consftgritom the graph indicated in Fig. (2). One
gets in terms of the functions, including color factors,

2\/6 dzRJ_dX
(2m)3 J 2x(1—Xx)

fr= [A1+2X(1—Xx)Ay] . (3.1)

The pion decay constant is divergent like Log LBQ//\ZQCD. This divergence is extremely
soft. To get the physical contribution, we just subtract the minimal contribw@itsing when the
integral on|R | is cut-off toAc.

3.2 Electromagnetic form factor

This physical observable is very powerful in order to constrain thea@menological structure
of the wave function both in the low and high momentum scales. In the impulsexamation,
the electromagnetic form factor is shown in Fig. (3).

Figure 3: Pion electromagnetic form factor in the impulse approxioratA similar contribution where the
photon couples to the antiquark is not shown for simplicity.

By using the diagrammatic rules of CLFD, we can write down the electromagmefititade
corresponding to Fig. (3) where the photon interacts with the quark.miggyit is pointlike, one
obtains:

m+R3 —xR A

d’R, d
Fr)r/q(Qz) = % - x(l—x)mz

ALA] + 2(A1A, + ALA, 4x(1—X)A2A, [(3.2
2n?) x(1-x) 1AL+ 2(A1A + A1A2) +4X(1—X)AxAy |(3.2)

If we define the four momentum transfeby q = (do,4,q)), with A-w = 0 andq parallel to
w, we haveQ? = —g? = A?, and thusR’, = R, —xA. The contribution from the coupling of the
photon to the antiquark can be deduced from (3.2) by the intercharge (1-x),R; <— —R_
and an overall change of sign. One thus obtains the full contribution tdeb&@nagnetic form
factor of the pion

F(Q@) = FI(Q%) + FA(Q) . (3.3)
Note that this form factor, in the impulse approximation, is completely finite sinazei dot
correspond to any radiative corrections at yaevertex. The charge radius of the pidn2)/2, can
be extracted fronf,(Q?) according to
d

(1) = ~63a Q)] - (3.4)
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3.3 Transition form factor

For the transition form factor in the impulse approximation, the first releviagtram, where
the virtual photon couples to the quark, is indicated in Fig. (4). The seconigibution involving

Figure4: Pion transition form factor in the impulse approximationsifilar contribution where the virtual
photon couples to the antiquark is not shown for simplicity.

the coupling of the virtual photon to the antiquark can be calculated similarlytdtal amplitude
for the transition form factor reads

o A3 —e]) [ PR dx X
Fr(Q°) = (2m)3 2X(1—X) M+ R2 — 2R | -A+X2Q2 (3.5)
X [Al—i-ZX(l—X)Az— RiéA(l—X)Az

The transition form factor of the pion is completely finite thanks to the extrardbpee on
the transverse momentum as compared to the decay constant (3.1).

4. Numerical results

Our phenomenological analysis has three independent parameterfistThae,3, gives the
typical size of the non-relativistic wave function we start from in (2.4,2T%)e second parameter
is the quark (or antiquark) constituent mass The third one is the strong coupling constant in
the low momentum region given by? in (2.10). The values of these parameters are indicated in
Table 1, for the two types of non-relativistic wave functions used in thisystud

B m ag
Gauss w.f. 35 250MeV 13
Power-law w.f.| 3.72 250 MeV 035

Table 1: Parameter sets of the calculation.

These three parameters are fixed to get an overall good descriptianmibthdecay constant,
charge radius, electromagnetic and transition form factors. Our pretictar the pion decay
constant and charge radius are in excellent agreement with the expaiata: f,=131 MeV,
(r2)1/2=0.67 MeV for both wave functions.
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The pion electromagnetic and transition from factors are shown in Fig8) {&F the two
types of wave functions used in this study. Given the large experimentas et large momentum
transfer, we do not attempt in this study to get a best fit to all the data, Huibjskow that an
overall agreement of all the available data is possible within our framework.
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Figure 5: Pion electromagnetic form factor calculated with two typéwave function. The solid (dashed)
line corresponds to the power-law (gaussian) wave fundtidhe non-relativistic limit. The experimental

data are from [5, 6, 7, 8, 9, 10, 11, 12].

The pion electromagnetic form factor is shown in Fig. (5) together with thédwade exper-
imental data. Given the experimental errors which are large above 3,®eth parametrization
(gaussian or power-law) give a rather good account of the data, whbé kinematical domain

available.
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Figure 6: Pion transition form factor calculated with two types of wé&unction. The solid (dashed) line
corresponds to the power-law (gaussian) wave functionémtin-relativistic limit. The experimental data

are from [13, 14, 15].

The corresponding results for the pion transition form factor are showsig. (6). Both
parametrizations are also in good agreement with the experimental dataryAtigk momentum
transfer however, fa@? > 15 Ge\?, our results underestimate slightly the experimental data. There
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is no way to adjust our parameters to get a better agreement for the traf@itiofactor without
spoiling the good agreement we get for the electromagnteic form factoshéldd however wait
for more precise experimental data before drawing any definite conohuisio

5. Summary

We have investigated in this study the full relativistic structure of the pion inrdmadwork of
the constituent quark model. Our wave function is constructed startingdnpuanely phenomeno-
logical wave function in the non relativistic limit. Dynamical relativistic correcéi@ne included
by a one gluon exchange process. This latter generates the neaetstvistic high momentum
components in the pion wave function.

From this full structure of the pion wave function, we have been able te hawverall very
good agreement with all experimental data available, both in the low and high mhameomain.
It is necessary to confirm the recent Babar data for the pion transitrom fiector at very high
momentum transfer (till abo@? ~ 40 Ge\?), with more precise data.

This analysis shows also the real flexibility of CLFD in describing few bogtesns in rela-
tivistic nuclear and patrticle physics. Its application to more fundamentalladitms starting from
first principles is also under way [16].
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