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1. Introduction

Recent years have witnessed a great deal of interest in the possible existence of mass dimension
two condensates in gauge theories, see for example [1, 2, 3, 4, 6, 7, 5, 8, 9, 10, 11, 13, 14, 12] and
references therein for approaches based on phenomenology, operator product expansion, lattice
simulations, an effective potential and the string perspective. There is special interest in the operator

A2
min = min

U∈SU(N)
V −1

∫
d4x(AU

µ )2 , (1.1)

which is gauge invariant due to the minimization along the gauge orbit. It should be mentioned that
obtaining the global minimum is delicate due to the problem of gauge (Gribov) ambiguities [15].
As is well known, local gauge invariant dimension two operators do not exist in Yang-Mills gauge
theories. The nonlocality of (1.1) is best seen when it is expressed as [16]1

A2
min =

∫
d4x

[
Aa

µ

(
δµν −

∂µ∂ν

∂ 2

)
Aa

ν −g f abc
(

∂ν

∂ 2 ∂Aa
)(

1
∂ 2 ∂Ab

)
Ac

ν

]
+O(A4) . (1.2)

The relevance of the condensate 〈A2
µ〉min was discussed in [1, 2], where it was shown that it can

serve as a measure for the monopole condensation in the case of compact QED.
All efforts so far have concentrated on the Landau gauge ∂µAµ = 0. The preference for this

particular gauge fixing is obvious since the nonlocal expression (1.2) reduces to the local opera-
tor A2

min = A2
µ . In the case of a local operator, the Operator Product Expansion (OPE) becomes

applicable, and consequently a measurement of the soft (infrared) part 〈A2
µ〉OPE becomes possible.

Such an approach was followed in e.g. [8] by analyzing the appearance of 1/q2 power corrections
in (gauge variant) quantities like the gluon propagator or strong coupling constant, defined in a
particular way, from lattice simulations. Let us mention that already three decades ago attention
was paid to the condensate 〈A2

µ〉 in the OPE context [17].
Recently, Chernodub and Ilgenfritz [12] have considered the asymmetry in the dimension two

condensate. They performed lattice simulations, computing the expectation value of the electric-
magnetic asymmetry in Landau gauge, which they defined as

∆A2 = 〈g2A2
0〉−

1
d−1

d−1

∑
i=1

〈g2A2
i 〉 . (1.3)

At zero temperature, this quantity must, of course, be zero due to Lorentz invariance2. Necessarily
it cannot diverge as divergences at finite T are the same as for T = 0, hence this asymmetry is,
in principle, finite, and it can be computed without renormalization, for all temperatures. Their
results are depicted in Figure 1. At high temperatures, general thermodynamic arguments predict a
polynomial behavior ∝ T 2, and this is also what the authors of [12] found3. For the low-temperature

1We will always work in Euclidean spacetime.
2We shall deliberately use the term Lorentz invariance, though we shall be working in Euclidean space throughout

this paper.
3A perturbative computation gives a positive proportionality constant, in contrary to what is erronously [18] found

in [12]. The lattice computations for T < 6 Tc find a negative proportionality constant, so one would expect the real
high-temperature behavior to start yet later.
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Figure 1: Lattice results for the electric-magnetic assymetry ∆A2 as function of the temperature for SU(2)
pure gauge theory, as found in [12].

behavior, however, one would expect an exponential fall-off with the lowest glueball mass in the
exponent, ∆ ∼ e−mglT . Instead, they found an exponential with a mass m significantly smaller than
mgl.

2. 〈A2
µ〉 and ∆A2 in the LCO formalism

In order to get more insight in the behavior of the asymmetry, we have investigated it using
the formalism presented in [3]. A meaningful effective potential for the condensation of the Local
Composite Operator (LCO) A2

µ was constructed by means of the LCO method. This is a nontrivial
task due to the compositeness of the considered operator. We consider pure Euclidean SU(N)
Yang–Mills theories with action

SYM+gf =
∫

d4x
(

1
4
(Fa

µν)2 +Sgf +ba
∂µAa

µ + c̄a
∂µDab

µ cb
)

. (2.1)

We couple the operator A2
µ to the Yang–Mills action by means of a source J:

SJ = SYM +
∫

d4x
(

1
2

J(Aa
µ)2− 1

2
ζ J2

)
. (2.2)

The last term, quadratic in the source J, is necessary to kill the divergences in vacuum correlators
like 〈A2(x)A2(y)〉 for x → y, or equivalently in the generating functional W [J], defined as

e−W [J] =
∫

[fields]e−SJ . (2.3)

The presence of the LCO parameter ζ ensures a homogenous renormalization group equation for
W [J]. Its arbitrariness can be overcome by making it a function ζ (g2) of the strong coupling
constant g2, allowing one to fix ζ (g2) order by order in perturbation theory in accordance with the
renormalization group equation.

In order to access the electric-magnetic asymmetry, a second source Kµν is coupled to the
traceless part of Aa

µAa
ν . This second operator will not mix with A2

µ itself, which allows control

3



P
o
S
(
L
C
2
0
1
0
)
0
7
1

The asymmetry of the dimension two condensate David Vercauteren

over the renormalization group of these two operators. Again a term quadratic in the new source
must be added, introducing a second parameter ω(g2) which can, again, be fixed order by order
in accordance with the renormalization group equation. We have proven the all-order perturbative
renormalizability of this extention of the formalism using the algebraic method based on the Ward
identies [19].

In order to recover an energy interpretation, the terms ∝ J2 and k2 can be removed by employ-
ing a Hubbard–Stratonovich transformation, amounting to inserting the following unities into the
path integral:

1 =
∫

[dσ ]e−
1

2ζ

∫
ddx( σ

g + 1
2 A2

µ−ζ J)2

=
∫

[dϕµν ]e−
1

2ω

∫
ddx( 1

g ϕ+ 1
2 Aµ Aν−ω kµν)2

, (2.4)

with ϕµν a traceless field, leading to the action

S = SYM +
∫

ddx

[
1

2ζ

σ2

g2 +
1

2ζ g
σA2

µ +
1

8ζ
(A2

µ)2 +
1

2ω

ϕ2
µν

g2 +
1

2ωg
ϕµνAµAν +

1
8ω

(Aa
µAa

ν)2

]
.

(2.5)
Starting from this, it is possible to compute the effective potential V (σ ,ϕµν), given the correspon-
dences

〈σ〉=−g
2
〈A2

µ〉 , 〈ϕµν〉=−g
2

〈
AµAν −

δµν

d
A2

λ

〉
. (2.6)

Now we determine the values of ζ and ω from the renormalization group equations for the
sources J and Kµν . For this, some anomalous dimensions and renormalization factors have to be
computed up to one loop order higher than the intended loop order we are interested in. We have
done this using the MINCER algorithm. The final result is up to one-loop order:

ζ =
N2−1
16π2

[
9

13
16π2

g2N
+

161
52

]
, ω =

N2−1
16π2

[
1
4

16π2

g2N
+

73
1044

]
. (2.7)

3. Computation and minimalization of the action

The effective potential V (σ ,ϕµν) can now be computed using standard techniques. We have
taken the background fields σ and ϕµν to have space-time independent vacuum expectation values
and ϕµν to be the traceless diagonal matrix diag(A,− 1

d−1 A, . . . ,− 1
d−1 A) [20].

3.1 Low temperatures

Computing the effective action up to one-loop order at zero temperature, yields only the mini-
mum found in [3], which is what we expect. For finite but still not too high temperatures, the poten-
tial can be minimized numerically. The result is depicted in Figure 2. We see that the asymmetry
rises at low temperatures, which agrees qualitatively with the findings of [12]. The low-temperature
expansion of ∆A2 reads

∆A2 = (N2−1)
g2π2

30

(
1− 85

1044
g2N

(4π)2

)
T 4

m2 , (3.1)

and there is no correction to 〈A2
µ〉 at this order. Remark that we find a polynomial behavior ∝

T 4/m2 instead of an exponential. This does not agree with the lattice results, but in [12] the lowest
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Figure 2: The 〈g2A2
µ〉 condensate (full line) and the assymetry ∆A2 (dashed line) as functions of the temper-

ature, in units ΛMS.

Figure 3: Left: The diagrams giving the Debye mass in HTL resummation. The ghost loop is not necessary
[22]. Right: More diagrams that need to be resummed, coming from the σ and ϕµν parts of the LCO
Lagrangian. The dotted line is the σ or φµν propagator, and the labeled vertex depicts the additional vertices
introduced by the formalism.

temperatures reached were T = 0.4 Tc, where our expansion is not valid anymore. This also does
not agree with the thermodynamic argument that, in a theory with a massgap, one would expect
exponential scaling. However, the asymmetry does not get a gauge invariant meaning by going to
the Landau gauge.

3.2 High temperatures

At temperatures higher than 0.67 ΛMS, the minimum disappears. This signals a phase transi-
tion to the perturbative vacuum. In order to access this regime, it is possible to expand the effective
potential for high temperatures, which yields

〈g2A2
µ〉= g2(N2−1)

T 2

4
, ∆A2 = g2(N2−1)

T 2

12
. (3.2)

This coincides with the perturbative result.
In order to compute higher-order corrections to this, it is necessary to perform a Hard Thermal

Loop (HTL) resummation [21], as nonresummed perturbation theory leads to a tachyonic mass in
our case4. In ordinary pure Yang–Mills theory at this order, HTL amounts to giving the timelike
gluon a Debye mass m2

D = N
3 g2T 2, which effectively resums the hard (high momentum) contribu-

tions of the diagrams left in Figure 3. In our formalism, however, there are four additional vertices
giving rise to four extra diagrams that need to be resummed, shown at the right in Figure 3. Com-
puting these additional diagrams, it turns out that they exactly cancel the lowest-order contribution
from the condensate. Solving in the large-T limit yields

〈g2A2
µ〉= g2(N2−1)

(
T 2

4
− mDT

4π
+ · · ·

)
, ∆A2 = g2(N2−1)

(
T 2

12
− mDT

36π
+ · · ·

)
, (3.3)

4The condensate and the mass generated by it differ by a negative multiplicative constant.
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which is exactly what one would expect from perturbation theory.

4. Conclusions

The temperature dependence of the nonperturbative dimension two condensate and its electric-
magnetic asymmetry have been studied analytically. At low temperatures, we find qualitative agree-
ment with the lattice results. At high temperatures, the perturbative vacuum is recovered.

We wish to thank M. N. Chernodub for encouraging this research.
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