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The investigation of weak bosonsV (V = W±, Z) produced with or without associated hard QCD
jets will be of great phenomenological interest at the LHC. Owing to the large cross sections and
the clean decay signatures of the vector bosons, weak-bosonproduction can be used to monitor
and calibrate the luminosity of the collider, to constrain the PDFs, or to calibrate the detector.
Moreover, the Z+jet(s) final state constitutes an importantbackground to a large variety of signa-
tures of physics beyond the Standard Model.

To match the excellent experimental accuracy that is expected at the LHC, we have worked out

a theoretical next-to-leading-order analysis ofV+jet production at hadron colliders. The focus of

this talk will be on new results on the full electroweak corrections to Z(→ l−l+)+jet production

at the LHC. All off-shell effects are included in our approach, and the finite lifetime of the Z

boson is consistently accounted for using the complex-massscheme. In the following, we briefly

introduce the calculation and discuss selected phenomenological implications of our results.
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1. Introduction

The survey of Standard Model weak-boson production is an important task in the era of LHC
physics. The investigation of inclusive Z-boson production is of special importance, since the
production cross section is comparably large, and the two charged leptons in the final state allow
for a precise event reconstruction, e.g. for a precise measurement of the invariant massMll and the
transverse momentumpT,ll of the intermediate boson. Therefore, such events are well suited to
monitor and to calibrate the luminosity of the collider, to determine the lepton energy scale and the
detector resolution, as well as to test the linearity of the detector response. Finally, the Drell–Yan
process also plays an important role in a precise determination of the W-boson mass and width.

At the LHC, Z bosons will often be accompanied by one or more hard QCD jets. On the one
hand, such processes constitute a significant background tovarious scenarios of physics beyond
the Standard Model that might be discovered at the LHC. On theother hand, the study ofV+jets
(V = W/Z) events at the LHC may help us to gain a deeper understandingof QCD and jet physics
in general.

The next-to-leading-order (NLO) QCD corrections to Z+jet and Z+2jets production at hadron
colliders are known for a long time [1, 2]. They are implemented in Monte Carlo generators [2] and
recently Z+jet production has been matched with parton showers [3]. In the past year, NLO QCD
results forV+3jets and even W+4jets production were presented [4]. However, until now only the
purely virtual weak corrections to on-shell Z+jet production have been calculated for the LHC [5],
including next-to-leading-logarithmic and next-to-next-to-leading-logarithmic approximations. In
Ref. [5], the focus was on the high-energy behaviour of the cross section and the dominating uni-
versal high-energy logarithms. Complementary to those results, in this work we present the full
NLO electroweak (EW) corrections to off-shell Z+1jet production at the LHC, taking into account
the leptonic decay of the Z boson to allow for a realistic event definition.

2. Details of the calculation

In this section we briefly introduce the setup of the calculation which closely follows the setup
explained in detail in Ref. [6] in the context of W+jet production. For more process-specific details
on Z+jet production we refer the reader to our forthcoming publication on the subject.

At tree level, three partonic channels contribute to the processes pp/p̄p→ Z/γ + jet→ l−l+ +

jet,

(i) qq̄→ Z/γ +g, (ii) qg→ Z/γ +q, (iii ) gq̄→ Z/γ + q̄,

with q = u,d,c,s,b denoting the active quarks. The QCD parton in the final state (quark or gluon)
will eventually be detected as a hard jet in the hadronic calorimeter after hadronization.

The finite lifetime of the Z boson is accounted for by including the corresponding decay width
ΓZ in the Z-boson propagator. We work in thecomplex-mass scheme (CMS) for unstable parti-
cles[7], which enables a consistent and gauge-invariant treatment of finite-lifetime effects in one-
loop calculations. In the CMS, the vector-boson massesMV are consequently replaced by complex
parameters,M2

V → µ2
V = M2

V − iMVΓV , in the propagatorsand in the definition of all derived quan-
tities, for example the weak mixing angle, i.e. cosθ2

w ≡ µ2
W/µ2

Z.
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Figure 1: EW corrections (right) to the invariant-mass distributionof the lepton pair (left). Corrections for

bare muons (δ µ+µ−
EW ) and for recombination of collinear lepton–photon pairs (δ rec

EW) are shown.

The computation of the fullO(α) corrections to Z+jet production requires the calculation of
real bremsstrahlung corrections due to photon emission as well as the calculation of one-loop vir-
tual corrections. Both real and virtual corrections give rise to so-calledinfrared (IR) singularities
connected with soft and/or collinear photon emission. These singularities are regularized either di-
mensionally or alternatively via small lepton and quark masses and an infinitesimal photon massλ
and appear as lnml , lnmq, and lnλ terms in intermediate steps of the calculation. In mass regular-
ization the lnλ -dependence drops out after combining virtual and real contributions, and residual
lnmq-terms attributed to initial-state photon radiation off quarks are absorbed in the renormalized
parton distribution functions (PDFs) similar to a QCD factorization prescription. Since we discard
events with collinear parton–photon pairs in the final stateif the photon is sufficiently hard to distin-
guish Z+jet from Z+photon production, the calculation is not collinear safe. Hence, it is necessary
to introduce aphoton fragmentation function[8, 6] to avoid unphysical lnmq-terms in the physical
cross section, which indicate that the collinear quark–photon physics cannot be understood in a
purely perturbative approach.

In contrast to the quark masses, the lepton masses have a well-defined physical meaning and
allow for the purely perturbative calculation ofcollinear-safeandnon-collinear-safeobservables
with respect to collinear lepton–photon splittings. We consider event definitions with and without
recombination of collinear lepton–photon configurations in the electron and (bare) muon final state,
respectively, observing corrections enhanced by lnmµ-terms in the latter case (see Section 3). We
use an extended version [9] of the dipole subtraction formalism which allows one to analytically
extract the lnmµ-terms for non-collinear-safe observables.

3. Numerical results

In this section we discuss the distributions in the invariant massMll and the transverse massMT,ll

of the final-state lepton pair, where we focus on the results for the LHC at 14 TeV. The event-
selection criteria applied in our calculation are similar to the W+jet calculation which can be found
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Figure 2: EW corrections (right) to the transverse-mass distribution of the lepton pair (left). Z+jet and
W+jet production are compared for bare muons.

in Chapter (3.2) of Ref. [6]. For Z+jet production with two charged leptons in the final state, we
ask for a transverse momentumpT,l > 25 GeV and a rapidity|yl |< 2.5 for both leptons. Moreover,
we require a minimal invariant massMll > 50 GeV.

Figure 1 shows the typical Breit–Wigner shape of theMll distribution at leading order (left) and
the effect of the relative EW corrections (right). We observe dramatic positive corrections below the
peak atMZ which are even larger than in the single-Z case (see Fig. (12)in Ref. [10]), but exhibit
a similar qualitative behaviour. These huge effects can easily be allocated to photon radiation off
the final-state leptons, which systematically shifts events to lower values ofMll , where the tree-
level cross section is small. Of course, the relative corrections δ rec

EW for collinear-safe observables

(electrons in the final state) are much smaller than the corrections δ µ+µ−

EW for bare muons, since
in the collinear-safe case electron and photon are recombined to a new (jet-like) quasi-particle
that enters the cut procedure. Therefore, the kinematics isnot changed drastically in the collinear
phase-space region, where the matrix elements for photon emission are large.

The investigation of transverse-mass distributions allows one to directly compare W- and Z-
boson production, since the analogue ofMT,ll is also a well-defined observable for W bosons.
Concerning the LO cross section, the left-hand side of Fig. 2shows the Jacobian peak located at
the vector-boson mass and the rapid decrease for larger values ofMT,ll . Again, the EW radiative
corrections (right) are dominated by final-state photon emission; they induce positive contributions
below and negative contributions at the position of the peak. Comparing the impact of the corre-
sponding corrections for Z+ jet and W+ jet production, respectively, we observe that the effect is
roughly a factor of two larger in the Z+ jet case, because—contrary to the W+ jet situation—there
are two charged leptons in the final state that may emit a photon.

4. Summary

We have calculated the fullO(α) corrections to off-shell Z+ jet production with two charged
leptons in the final state for the LHC and the Tevatron, where the finite width of the Z boson
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is consistently accounted for using the complex-mass scheme. Our approach is fully exclusive,
allowing us to investigate any differential cross sectionsand apply any event-selection cuts that
are of interest for experimentalists. The numerical analysis reveals moderate corrections to the
total cross section as expected, but we find dramatic deviations in the line-shapes of fundamental
leptonic observables. The quantitative behaviour of the corrections turns out to be significantly
different compared to the single-Z production scenario, indicating that the indirect kinematic effects
of the additional hard jet on purely leptonic observables have to be accounted for in a reliable
analysis of LHC data.
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