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Exclusive electroproduction of vector mesons is a cruce ¥o probe QCD factorization prop-
erties. Such a factorization is up to now only proven, at thistt2 level, for a longitudinaly
polarized meson. It is crucial to extend our understandinth¢ case of transversely polarized
vector mesons. As a first step in this direction, we evaluageimpact factor of the transition
y* — pr, which is the relevant part of the amplitude within th€actorization approach valid at
large energies, taking into account the twist 3 contrimgjacoming both from quark antiquark
and from quark antiquark gluon correlators. We show that@egénvariant expression is obtained
with the help of QCD equations of motion.
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1. Introduction

The factorization properties of the leading twist amplitudes allow to study dexysé/e me-
son electroproduction [1], when the meson is (pseudo)scalar or lonwtlydpolarized. The case
of a transversely polarized vector meson is more involved since the cliditlyoof its leading
twist distribution amplitude (DA) leads to its decoupling in leading twist electrapetidn am-
plitudes [2] unless in reactions with more than two final hadrons [3]. Tcetstdnd available
data [4], one thus needs to consider carefully all twist 3 contribution® ribson quark gluon
structure within collinear factorization may be described by Distribution Amplgy@&s), clas-
sified in [5]. We consider here the case of very high energy collisioakeatron proton or electron
positron colliders [6, 7]. In the literature there are two approaches tattterfzation of the scat-
tering amplitudes in exclusive processes at leading and higher twists. ighe@one Collinear
Factorization (LCCF) [8,9] extends the inclusive approach [10] tdusiwe processes, dealing with
the factorization in the momentum space around the dominant light-cone diregtida the Co-
variant Collinear Factorization (CCF) approach in coordinate spacsueesfully applied in [5]
for a systematic description of DAs of hadrons carrying different twigfs.show [11] that these
two descriptions are equivalent at twist 3. For that, we perform ouysisavithin LCCF method in
momentum space. It introduces relevant soft correlators which asF@mot independent ones.
The correlators are reduced to a minimal independent set with the useaticegof motions and of
the light-cone-fixing vector independence condition. A dictionary is obtdieddeen LCCF and
CCF correlators, proving the equivalence between LCCF and CClhagpes. We illustrate this
equivalence by calculating up to twist 3 accuracy within both methods the irfgeot y* — pr,
which enters the description of thg p — p p andy*y — p p processes at large

2. LCCF factorization of exclusive processes

The amplitude for the exclusive process— pB is, in the momentum representation and in
axial gauge read${ andH are 2- and 3-parton coefficient functions, respectively)

of = / d‘%tr[H(é)(D(E)} + /d“eld“eztr[Hu(el,zz)qaﬂ(el,ez) +o 2.1)

In (2.1), the soft partsp are the Fourier-transformed 2- or 3-parton correlators which are matrix
elements of non-local operators. To factorize the amplitude, we choosipthimant direction
around which we decompose our relevant momenta and we Taylor exgganarthpart. Lep ~ pp

andn be two light-cone vectorgy(: n = 1). Any vector/ is then expanded as

Gy =YiPu+(li-p)Ny+biyy,  Yi=4i-n, (2.2)
and the integration measure in (2.1) is replaced*ds— d*¢;dy; 5(y; — £-n). The hard parH (¢)
is then expanded around the dominarirection:

OH (¢)

H(E) = Hiyp) + 75,

(l=ypPa+-.. (2.3)
t=yp

where(/ —y p)q ~ ¢} up to twist 3. To obtain a factorized amplitude, one performs an integration
by parts to replacé; by ;5 acting on the soft correlator. This leads to new operators containing
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transverse derivatives, such @@, thus requiring additional DA®-(1). Factorization is then
achieved by Fierz decomposition on a set of relevant Oiragatrices, and we end up with

o = tr[Hagfy) T @ ®hg(y) +tr [Hgf ()T | & 0 (v) +tr [Hirgy1,¥2) 1] © Pl (v1,v2) . (2:4)

where® is they-integration. Although the fields coordinatgsre on the light-cone in both LCCF
and CCF parametrizations of the soft non-local correlatpiis, alongn in LCCF while arbitrary
in CCF. The transverse physical polarization of ghemeson is defined by the conditions

er-n=er-p=0. (2.5)

Keeping all the terms up to the twist-3 order with the axial (light-like) gangé, = 0, the matrix
elements of quark-antiquark nonlocal operators for vector and aa@bwcorrelators without and

with transverse derivatives, Wlta,_-, = 2(0,_-, — dp) can be written as (here= An)

(P(Pp) (2 Yup(0)]0) = m, fp /0 dyexpliy p-Z [¢1(y) (€"-n)pu + $3(y) €7, , (2.6)

1

(P(Pp)|W(D)yui 95 W(0)[0) = my, fy /0 dyexpliy p-Z ¢ (Y) Pu€ty . (2.7)
1

(P(Po)| P (2) y5YuW(0)[0) = M, fpi/o dyexpliy p-Z $a(y) £uaps €7 pP0°, (2.8)

— 1
(P(Po)|P(2) Yyl g W(0)|0) = My fpi /0 dyexpliy p-Z @A (Y) Pu€arps € PP %, (2.9)

wherey (y) is the quark (antiguark) momentum fraction. Two analogous correlatenseeded to
describe gluonic degrees of freedom, introduddandD DAs according to

1
(P (Po)| B2 a0 (22)0(0)]0) = mp 3, [dys [ o P20 P2 By, ) puey . (210)
0 0

1 1
(P(Po)|P(21) 5 Yu9A, (22) W(0)|0) = my T4, / dy / dy, V1Patiey)P2ip(y, y,)
0 0

xpueo,)\ﬁgeﬁ pﬁn‘s. (211)

One thus needs 7 DAsp; (twist-2), B andD (genuine (dynamical) twist-3) ang, da,¢{, o4
(kinematical (a la Wandzura-Wilczek) twist-3 and genuine (dynamical) twist-3

These DAs are not independent. They are related by 2 Equations of fdqE®®OMs) and
2 equations arising from the invariance .@f under the arbitrary vectar, which comes from 3
sources. First, it enters the definition of the non-local correlators giirthe light-like separation
Z= A n. These correlators are defined in the axial light-like gauge= 0, which allows to get rid
of Wilson lines. Second, it determines the notion of transverse polarizdtibe p . Last,n enters
the Sudakov decomposition (2.2) which defines the transverse parton mupmierolved in the
collinear factorization. One can in fact show that the hard part doedep@nd on the gauge fixing
vectorn. Therefore, only the second and third sourcenefdependence should be investigated.
Based on Ward identities, this-dependence of7 can be recast in a system of constraints which
only involve the soft part. We thus have only 3 independent PAsB andD, which fully encode
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the non-perturbative content of tipeat twist 3.
The original CCF parametrizations of tpeDAs [5] also involve 3 independent DAs, defined
through 4 correlators related by EOMs. The 2-parton axial-vectoelztar reads,

1
T 1 a S« { .Z a
(p(po)| F(2)[2. 0 vt (0)10) = 7 Tomp et ppzy [ dy@P?g¥y) . (212)
0

1

(21, 2] = Pexp [igfdt(zl— o)Atz + (1-1t) 22)} being the Wilson line. Denoting the meson
0

polarization vector b, er is here defined to be orthogonal to the light-cone vegaadz:

(2.13)

Thuser (2.13) in CCF ancer (2.5) in LCCF differ sincez does not generally point in the
direction. The 2-parton vector correlator reads (up to twist 3)

p.ZZ‘H\WHe?ugﬂV)(y). (2.14)

1
(P(P) 1) 2. 0 y(00) = fomy [ cyd® [,
0

The 3-parton correlators are parametrized (up to twist 3 level) accotaling
(P(Pp)|¥(2)[2.tZyag Gy (tD)[t2,01¢(0)[0) = —ipa[pu€l, — Pvel My f3,
/DaV(al,az)eip‘Z(O’l*t“g), (2.15)

X

((P)|F(2)[2tZYa 659Gy (t2)[t2,01@(0)[0) = —palpu€’, — Pvel My T4,
x / Do A(ay, ap) P2t (2 16)
whereay, az, ag are momentum fractions of quark, antiquark and gluon respectively itis&le
p—meson,/Da = fldaljl‘dazjl‘dorg 5(1—a1—ap—ag) andGyy = —1£,,43GP. A comparison

0 0 0
of the correlators (2.6, 2.7, 2.8, 2.9, 2.10, 2.11) and (2.12, 2.14, 2115),i the axial gauge-A=
0 gives the following identification of the 2- and 3-parton DAs in LCCF and-@@proaches:

. 0 (a)
0= a0, s =00, sa)=—7 5, 247)
VL 1-y) A, 1-yo)
B(y17 YZ) - y2 — yl D(yla YZ) - y2 _ yl . (218)

3. y* — pr Impact factor up to twist three accuracy in LCCF and CCF

We have calculated, in both LCCF and CCF, the forward impact fagtor® of the subpro-
cessg+ y* — g+ pr, defined as the integral of the discontinuity in thehannel of the off-shell
S-matrix elementZ 9”9, In LCCF, one computes the diagrams perturbatively in a fairly di-
rect way, which makes the use of the CCF parametrization [5] less pradfieaheed to express
the impact factor in terms of hard coefficient functions and soft partanpetrized by the light-
cone matrix elements. The standard technique here is an operator peggaotion on the light
cone, which gives the leading term in the power counting. Since there iperator definition for
an impact factor, we have to rely on perturbation theory. The primary coatigicencountered is
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that thezZ — 0 limit of any single diagram is given in terms of light-cone matrix elements with-
out any Wilson line insertion between the quark and gluon operatorst(ipative correlators"),

like (p(pp)|Y(2) vy (0)|0). Despite working in the axial gauge one cannot neglect effects coming
from the Wilson lines since the two light cone vectarandn are not identical and thus, gener-
ically, Wilson lines are not equal to unity. Nevertheless in the axial gaugedhtibution of
each additional parton costs one extra power &,1allowing the calculation to be organized in

a simple iterative manner expanding the Wilson line. At twist 3, we need to keegotitribution

1
[2,0] = 1+ig [dt A, (zt) and to care about the difference between the phygiggiolarization

(2.5) from theoformal one (2.13). At twist 3-level the net effect of thigsdh line when computing
our impact factor is just a renormalization of the BA of (2.12), and similarly for the vector case.
We are then able to show that our two LCCF and CCF results are identicalesbt is gauge
invariant due to a consistent inclusion of fermionic and gluonic degrefeeeddom and it is free of
end-point singularities, due to ttkg regulator.

This establishes a consistent gauge invariant analysis of electrogimodattransversely po-
larized vector mesons at high energy. An extension of this work to lowemggregime where
collinear factorization allows to write the amplitude in terms of generalized paistribditions is
under way.
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