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1. Introduction.

Deeply virtual Compton scattering (DVCS) on the deuteragdihas recently attracted much
attention from the experimental point of view [1, 2]. One bétmain reasons of this interest is
the fact that the DVCS process gives information about a yee of parton distributions, called
generalized parton distributions (GPDs) which allow ta&st much information about the quark
and gluon structure of hadrons, particularly its spin dtreee[3], and to allow a femtophotography
of nuclei [4].

From the theoretical point of view, the leading twist-2 GHbDisthe deuteron were defined in
[5] and the DVCS amplitude on the deuteron was discussedadinig order in [6]. However, the
leading twist-2 accuracy for the DVCS amplitude is not erofmy the study of such processes
with significant transverse momenta, because of the QEDegiangriance breaking of the DVCS
amplitude in leading twist-2 order in the Bjorken limit anoimzero transverse final momenta. This
problem was resolved in [7] for a (pseudo)scalar targetn(pie*), where it was demonstrated that
one can restore the gauge invariance of the DVCS amplitudalgg into account the twist-
3 contributions, related to the matrix elements of quadegl operators. Besides, the relevant
additional terms provide the leading contribution to sorkapzation observables. Then, the same
ideas were used and generalized for the nucleon target [8hé#é follow the approach, presented
in [7], to make a comprehensive analysis of the twist thragrdmutions to the amplitude of the
DVCS off deuteron (or an arbitrary spin-one target).

Let us start with the discussion of the kinematics and appratons which we use in this
paper. The process we consider is

y* (@) +D(p1) — y(q) +D(p2),

with g2 = —Q? large, whileq2 = 0. At the Born level, the Feynman diagrams corresponding
to this process are depicted in Fig. 1. We introduce the “parsl “minus” vectors as®* =
A(1,0,0,1), n=1/(2A)(1,0,0,—1), n*-n=1. We consider the DVCS amplitude up to
the twist three accuracy, discarding the contributions@ated with the twist four and higher. The
hadron relative and transfer momenta can be written as

:p1+p2: M?

P 5 SN A=py—pr=—2EP+2EM°n+AT ~ —28P+AT,
(pr—p2)* 2 2 2072

=17 pA_Q A2—t=NA2—4E2M?~0. 1.1
(P2+p)* T 1)

2. Parameterization of the vector and axial-vector matrix e ements

We now introduce the parameterization of all relevant mattféements up to the twist three
accuracy. The parameterization of the twist-2 vector ¢aiwes is standard and can be found in
[5], for which we will use the shorthand notation:

(P2 2| [FO)yuw(@]™ %P1, M) Z PuHY. (65, e1,% &, 1), (2.1)
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Figure 1. The Feynman diagrams corresponding to deeply virtual Comptattering. NotationsP
p1, P=p;, K=k—-A/2=xP-A/2, K =k+A/2=xP+A/2, L=k —A/2~xP-A/2, L
ko+A/2~xP+A/2. Here k andk; correspond to the loop momenta in the diagrams.

We now come to the discussion of the twist-3 operator matements and their parametrizations.
We parametrize the vector quark correlatof as

(P2, 22| [BO) (@)™ 3 |prAs) Z AT GY s(8he1:%,8) + &5k (1 P) GY (% &) +
el (6 -P)GY(x, &) +M?e5] (e1-n) GY (x,&) +M?e] (€5 -n) G (x, §). (2.2)

In the forward limit, whered = 0, one ha®, = py, e;“ = e’[n €1, = €. Therefore, in this limit,
the parameterizations (2.1) and (2.2) reduce to the paeaizations withHy (x,0), HY (x,0) and
Gy (x,0), Gy (x,0). The deuteron, as a spin-one particle, has its polarizategrees of freedom
described by the spin density matrigje, = Pyy/3+ Sy +i/(2M) €4vapSa Pg, WherePy, is
the well-known unpolarized projector, the vecty represents the vectorial polarization and the
tensorS,, — the tensorial one. With this, one can see that the twistresponds to either the
unpolarized or the tensorial-polarized deuteron, whigettist-3 describes the tensorial or vectorial
polarization.

Asin [7], we introduce the matrix elements with a transvelsgvative (detailed consideration
of such matrix elements can be found in [9, 10]). The pararizetiton of the quark-antiquark
correlator with the transverse derivative is written asftiewing nine terms:

a2l (B0 wi@]" 912 2 P BBL ol e ) e PIBE )+
el (8- P)b7 (%, &)+ M?e;7 (- n)bg(x,f)+M2eIp(e;-n)b$(x,E)}. (2.3)

In a similar way, we parametrize the quark-antiquark-glaorrelator of genuine twist 3, replacing
in the r.h.s. of EQ. (2.3) (x, &) by Bi(Xq, %2, &).
The twist-2 axial-vector correlator is also standard org@an be parametrized as in [5] by

L ey, )t

(P2, 2| [FO) i ys(D)]™ 2 [p1, A1) B

In the forward limit, the twist-2 axial-vector correlatonrcesponds to the case where the deuteron
has the (longitudinal) vectorial polarization. For thediaB correlators, we have, using the Schouten

(n*,n,At)e g Hi Ax,E1).  (2.4)

the symbolZ 2 denotes the Fourier transformation with the measudveexp{—i(xP—A/2) - z}, while 2 corre-
sponds to the integration withx dxp exp{ —i(x1P —A/2)-zg —i(Xo — x1)P- 22 }.
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identity to determine the Lorentz independent structures,
. — - F 4
i (p2, A2 [F(0) 6w (D] ™ I AL) 2 £upg (€5 P) Gi‘(x, &) + EunpgT (€1 P) G2 (X, &)
+ M? Eunpg (65 n) G5 (x,&)+M?e EunpgT (E1- n) GL(x, &)+ SHATpez(e]_ P)GE(x, &)+  (2.5)
EunrPe; @1 NGE(X, &) + Eunrpe € -NGF(X, €) + Eunrne 1 PGs(X7 &) +M?€uarne € - NGo(X, &).

Again, in the forward limit, these twist-3 correlators asdated to the tensorial or (transverse)
vectorial polarizations of deuteron. The matrix elementheftwist-3 operator associated with the
qguark-antiquark operator containing a transverse dérevatads

_ w—3
(2. 2el [BOWsiof W@ Ipran) 2 Pu{ €onpg (65 P) A (x,€) + £ynpgr (€1 P) df (x,€)
1

+ M?e,pg (€5 -N)d3 (X, &) +M?5npgr(€1-N) g (X,&) + 2 EobrPes (€1 P)dg (x,€)
+ SpATP%el’ndg(x7f)+£PATPele§’nd;(x7f)+£PATﬂ6§el'Pdg(xaf)
+ MEeparacs nd (< 8) @)

From (2.6), it is not difficult to parameterize the threetéde correlator with the genuine twist-3.

3. Gaugeinvariant amplitude of DVCS on the deuteron target

Taking into account both kinematical and dynamical twisiBtributions and using the QCD
equations of motion relating the twist 2 and 3 (see [7]), thegg invariant expression of the DVCS
amplitude takes the form:

Tiv

(A1,A2)
A1,A2) 1 2 3 4 AT «
o ~ op. Q/ X — EJH (Zt(v)JF%(v)Jr%(v)Jr%v)) +O(A$,M2) + “crossed

(3.1)

whereQ = (q+ ¢)/2 and the structure amplitude.y,’ read
Tay =HY, s(xe1.€) (26 PuPy+ PuQu + Py~ (P Q) + 3R] %F’VAZ> +
GY s(xer )(EPVAT +35P,AT +AL(5V+AE(§H> +
<M2<e1-n><ez-n>eé<x> - &P P Ga — (e3P 6RO~
(er-P)(€;-1) (G7(x) — G ))) <3EPHAI —EPVAL—AL@ME@),

7@ = ( e1-P)GY(X) + M (el.n)eg(x)> <5Pve,3,ﬂ+3fpue,33+ezﬂ@+eé$6p> +

4
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<(61 -P)G5(x) + M?(ey - n)G4A(><)> <SE Pu&sy — EPES) —€51Qy + eEE@) :

78 = (<ez-P>e¥<x> +M2<ez-n>ez<x>) (epvezu an,d, +e1u6v+e1v6u) n
(<ez P)GX)+ M(es- n)Gé(x)) (ss Pyl — ERel, — e, 0. +e1v6u)

7 = guvpn<snqueI HE(x, &) + % EnpatesT (€1 P)HZ (%, &)+

1 K
w2 Enpare] (€2 P) HE(X, &) + EnpatesT (€1 M) H'(X, f))

In conclusion, we have taken into account both the kinerab#ind dynamical twist-3 contri-
butions in order to derive the gauge invariant amplitudehefdeeply virtual Compton scattering
off a spin-one particle (deuteron).
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