



# Particle Production in Two-Photon Collisions at Belle

H. Nakazawa\*

National Central University (Taiwan) E-mail: nkzw@post.kek.jp

We report recent measurements of the  $\gamma\gamma \rightarrow \eta\eta$  process in the energy range, 1.096 GeV < W < 3.8 GeV and in scattering angle,  $|\cos\theta^*| \le 0.9$  or  $\le 1.0$  depending on *W*, where *W* is the energy of the two-photon center-of-mass system and  $\theta^*$  is the  $\eta$  scattering angle. In the lower energy region, we perform a partial wave analysis to the differential cross section and extract resonance parameters. In the higher energy region, (differential) cross section is compared with QCD predictions. We also present a study of  $\eta_c(2S)$  production with 6-prong final states in two-photon collisions.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

#### \*Speaker.



**Figure 1:** Left: Cross section of the  $\gamma\gamma \rightarrow \eta\eta$  process integrated over  $|\cos\theta^*| < 1$  (W < 2.0 GeV) or  $|\cos\theta^*| < 0.9$  (W > 2.0 GeV). Errors are statistical only. The dotted curve shows the size of the systematic uncertainty. Right: The total cross section ( $|\cos\theta^*| < 1.0$ ) and fitted curves. Dotted (dot-dashed) curves are  $|S|^2$  ( $|D_2|^2$ ) from the fit.

## 1. Introduction

Two-photon production of exclusive hadronic final states provides useful information about resonances and pertubative and nonperturbative QCD. From theoretical viewpoint, two-photon process is attractive because of the absence of strong interactions in the initial state and the possibility of calculating  $\gamma\gamma \rightarrow q\bar{q}$  amplitudes. In addition, the quantum numbers of the final state are restricted to states of charge conjugation C = +1 with J = 1 forbidden.

We have measured production of charged meson pairs [1], neutral meson pairs [2], proton antiproton pair [3] and *D*-meson pair [4] in two-photon collisions. This paper reports recent measurements of  $\gamma\gamma \rightarrow \eta\eta$  [5] and  $\gamma\gamma \rightarrow \eta_c(2S) \rightarrow 6$  prong.

### 2. $\gamma\gamma \rightarrow \eta\eta$

The results are based on a 393 fb<sup>-1</sup> data sample collected with the Belle detector [6] at the KEKB  $e^+e^-$  collider [7].  $\eta$  is reconstructed with a photon pair. This pure neutral final states are selected with energy sum and cluster counting triggers, both of which information are provided by a CsI(Tl) electromagnetic calorimeter. We subtract background by studying sideband events in two-dimensional  $M_1(\gamma\gamma)-M_2(\gamma\gamma)$  distributions. Further background effects are studied using  $|\sum \vec{p_i}|$  distribution and taken into account as systematic errors. Fig. 1 (Left) shows the total cross sections.

For the lower energy region 1.16 GeV < W < 2.0 GeV, we apply a partial wave analysis to the differential cross section (Fig. 1 (Right)). In addition to the known  $f_2(1270)$  and  $f'_2(1525)$ , we introduce a tensor meson  $f_2(X)$  to describe  $D_2$  wave, which may correspond to  $f_2(1810)$  state [8], and the mass, width and product of the two-photon decay width and branching fraction  $\Gamma_{\gamma\gamma}\mathscr{B}(\eta\eta)$ for  $f_2(X)$  are obtained to be  $1737 \pm 9 \text{ MeV}/c^2$ ,  $228^{+21}_{-20}$  MeV and  $5.2^{+0.9}_{-0.8}$  eV, respectively. In the



**Figure 2:** Left: Angular dependence of the differential cross sections in different *W* regions. The solid and dashed curves are proportional to  $1/\sin^4 \theta^*$  and  $1/\sin^6 \theta^*$ , respectively. All of them are normalized to have unit area. Right: (a) The *W* dependence of the cross sections ( $|\cos \theta^*| < 0.8$ ) for the  $\pi^0 \pi^0$  (open squares) and  $\eta \eta$  (closed circles) processes. The curve is the power-law fit for  $\eta \eta$ . (b) The *W* dependence of the cross section ratio of  $\eta \eta$  to  $\pi^0 \pi^0$  ( $|\cos \theta^*| < 0.8$ ). The line is the average in the 2.4 - 3.3 GeV range.

higher energy region 2.4 GeV < W < 3.2 GeV where effects from resonances are small, we compare the (differential) cross section with (pertubative) QCD ((p)QCD) predictions. In our previous studies for  $\pi^+\pi^-$ ,  $K^+K^-$ ,  $\pi^0\pi^0$  and  $\eta\pi^0$  modes, the angular dependence in  $W \gtrsim 3.0$  GeV were consistent with  $1/\sin^4\theta^*$  while pQCD predicts  $1/\sin^4\theta^*$  only for charged meson pair. We find that the angular dependence of  $\eta\eta$  is in better agreement with  $1/\sin^6\theta^*$  than  $1/\sin^4\theta^*$  (Fig. 2 (Left)). The total cross section is fitted with a power-low function,  $W^{-n}$  and  $n = 7.8 \pm 0.6 \pm 0.4$ is obtained (Fig. 2(a)). Fig. 2(b) shows the W dependence of the ratio between the measured cross section integrated over  $|\cos\theta^*| < 0.8$  of  $\gamma\gamma \to \eta\eta$  to  $\gamma\gamma \to \pi^0\pi^0$ . The averaged value of  $0.37 \pm 0.02 \pm 0.03$  can be compared with the (p)QCD predictions [9].



**Figure 3:**  $\chi_{c0}$ ,  $\chi_{c2}$  and  $\eta_c(2S)$  peaks in (a) $6\pi$ , (b) $4K2\pi$  and (c) $K_SK3\pi$  mass distributions. Curves are the best fit results.

| Process     | $M ({\rm MeV/c^2})$              | $\Gamma$ (MeV)                    | evts         | signi.       | $\Gamma_{\gamma\gamma}\mathscr{B}\left(\mathrm{eV} ight)$ |
|-------------|----------------------------------|-----------------------------------|--------------|--------------|-----------------------------------------------------------|
| $6\pi$      | $3638.9 \pm 1.6 \pm 2.3$         | $10.7 \pm 4.9$                    | $1485\pm274$ | 8.5σ         | $20.1 \pm 3.7 \pm 3.2$                                    |
| $2K4\pi$    | $3634.7 \pm 1.6 \pm 2.8$         | $1.4^{+6.3}_{-1.4}$ , 13(90%C.L.) | $407\pm91$   | 6.2σ         | $10.2 \pm 2.3 \pm 3.4$                                    |
| $K_S K3\pi$ | $3636.5 \pm 1.8 \pm 2.4$         | $15.9 \pm 5.7$                    | $563\pm71$   | 8.7 <b>σ</b> | $30.7 \pm 3.9 \pm 3.7$                                    |
| Average     | $3636.9 \pm 1.1 \pm 2.5 \pm 5.0$ | $9.9 \pm 3.2 \pm 2.6 \pm 2.0$     |              |              |                                                           |

**Table 1:** Fit results for  $\eta_c(2S)$  parameters. Errors are statistical, systematics and effects from possible interference with continuum.

## 3. $\gamma\gamma \rightarrow \eta_c(2S)$

Motivated by the fact that  $\eta_c(2S)$  was not seen in our result of four-prong final states [10], we study six-prong final states with four modes,  $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-(6\pi)$ ,  $K^+K^-\pi^+\pi^-\pi^+\pi^-(2K4\pi)$ ,  $K^+K^-K^+K^-\pi^+\pi^-(4K2\pi)$  and  $K_SK^{\pm}\pi^{\mp}\pi^+\pi^-(K_SK3\pi)$ , using a data sample of 923 fb<sup>-1</sup>.  $\chi_{c0}$ ,  $\chi_{c2}$  and  $\eta_c(2S)$  peaks are clearly seen in  $6\pi$ ,  $2K4\pi$  and  $K_SK3\pi$  mass distributions (Fig. 2). They are the first observations except  $\chi_{c0} \rightarrow 4K2\pi$  mode. We do not take interference effect with continuum into account, which is estimated as systematic error independently. Fit results for the  $\eta_c(2S)$  are summarized in Table 1.

### References

- T. Mori, S. Uehara, Y. Watanabe *et al.* (Belle Collaboration), J. Phys. Soc. Jpn, **76**, 074102 (2007). T. Mori *et al.* (Belle Collaboration), Phys. Rev. D **75**, 051101(R) (2007). H. Nakazawa *et al.* (Belle Collaboration), Phys. Lett. B **615**, 39 (2005). K. Abe *et al.* (Belle Collaboration), Eur. Phys. J. C **32**, 323 (2004).
- [2] W. T. Chen *et al.* (Belle Collaboration), Phys. Lett. B 651, 15 (2007). S. Uehara *et al.* (Belle Collaboration), Phys. Rev. D 78, 052004 (2008). S. Uehara *et al.* (Belle Collaboration), Phys. Rev. D 79, 052009 (2009). S. Uehara *et al.* (Belle Collaboration), Phys. Rev. D 80, 032001 (2009).
- [3] C. C. Kuo et al. (Belle Collaboration), Phys. Lett. B 621, 41 (2005).
- [4] S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 96, 082003 (2006).
- [5] S. Uehara et al. (Belle Collaboration), hep-ex/1007.3779 (2010), accepted by Phys. Rev. D.
- [6] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
- [7] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003).
- [8] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
- [9] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981). M. Benayoun and V. L. Chernyak, Nucl. Phys. B 329, 285 (1990). M. Diehl, P. Kroll and C. Vogt, Phys. Lett. B 532, 99 (2002).
   V. L. Chernyak, hep-ph/0912.0623 (2009).
- [10] S. Uehara et al. (Belle Collaboration). Eur. Phys. J. C 53, 1 (2008).