PoS

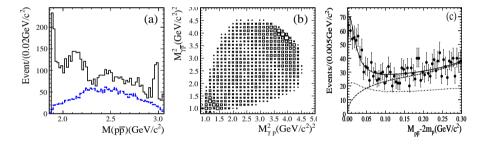
New Observations on Light Hadron Spectroscopy at BESIII

Huang Yanping (for BESIII collaboration)*

Institute of High Energy Physics, Beijing 100049, People's Republic of China E-mail: huangyp@ihep.ac.cn

With samples of 220 million J/ψ events and 110 million ψ' events collected in the BESIII detector, $p\bar{p}$ mass threshold enhancement is studied. The enhancement is evident in J/ψ radiative decay, which is consistent with BESII result. No significant narrow enhancement is observed in ψ' radiative decay. For $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ decay, the X(1835), which was previously observed by BESII, is confirmed with a statistical significance that is larger than 20σ . In addition, in the $\pi^+\pi^-\eta'$ invariant mass spectrum, the X(2120) and the X(2370), are observed with statistical significances larger than 7.2σ and 6.7σ , respectively. A new process $J/\psi \rightarrow \omega X(1870) \rightarrow \omega a_0\pi$ is also observed in $J/\psi \rightarrow \omega \pi^+\pi^-\eta$ decay.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France


*Speaker.

1. Introduction

An anomalously strong $p\bar{p}$ mass threshold enhancement, the X(1860), was observed by the BESII experiment in the radiative decay process $J/\psi \rightarrow \gamma p\bar{p}$ [1]. An interesting feature of this enhancement is that corresponding structures are not observed in near-threshold $p\bar{p}$ cross section measurements, or in *B*-meson decays [2], or in radiative ψ' [3] or $\Upsilon \rightarrow \gamma p\bar{p}$ decays [4], or in $J/\psi \rightarrow \omega p\bar{p}$ decays [5]. One of theoretical speculations [6] is the intriguing suggestion that it is a $p\bar{p}$ bound state, sometimes called baryonium [6]. It also stimulated a study of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, in which a resonance, the X(1835), was observed in the $\pi^+\pi^-\eta'$ invariant-mass spectrum with a statistical significance of 7.7 σ at BESII [7]. The possible interpretations include a $p\bar{p}$ bound state [6], a glueball [8], a radial excitation of the η' meson [9], etc.

The high statistics data samples of $\sim 220 \times 10^6 J/\psi$ and $\sim 110 \times 10^6 \psi'$ events accumulated by the upgraded Beijing Spectrometer (BESIII) in 2009, located at the Beijing Electron-Positron Collider (BEPCII) at the Beijing Institute of High Energy Physics, provide an opportunity to confirm the existence of above resonances, look for 0^{-+} glueballs in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ decays, and search for possible related states in other decay modes, such as $J/\psi \rightarrow \omega \pi^+ \pi^- \eta$ decays.

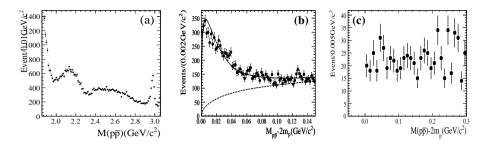

2. $p\bar{p}$ Mass Threshold Study in J/ψ and ψ' radiative decays

Figure 1: The selected $\psi' \to \pi^+ \pi^- J/\psi(J/\psi \to \gamma p\bar{p})$ events: (a) The $p\bar{p}$ invariant mass spectrum. (b) An $M^2(\gamma p)$ (horizontal) *versus* $M^2(\gamma \bar{p})$ (vertical) Dalitz plot for the selected events. (c) $p\bar{p}$ mass spectrum fitting in the threshold region, the solid curve is the fit result, the dashed curve shows the fitted background function, and the dash-dotted curve indicates how the acceptance varies with $M_{p\bar{p}}$.

Fig. 1(a) shows the $p\bar{p}$ invariant mass distribution for surviving events of $\psi' \rightarrow \pi^+\pi^- J/\psi(J/\psi \rightarrow \gamma p\bar{p})$. The distribution's features include the η_c peak, a broad enhancement around $M_{p\bar{p}} \sim 2.2 \text{ GeV}/c^2$, and a prominent low-mass peak at the $p\bar{p}$ mass threshold, similar to that reported by BESII [1]. The Dalitz plot in Fig. 1(b) shows that a band corresponding to the threshold enhancement is evident in the upper right corner. Fitting with an acceptance weighted *S*-wave Breit-Wigner function plus the background shape shown in Fig. 1(c), yields a peak mass of $M = 1861^{+6}_{-13} \text{ (stat)}^{+7}_{-26} \text{ (syst) MeV}/c^2$ and a width of $\Gamma < 38 \text{ MeV}/c^2$ at the 90%*C.L.*

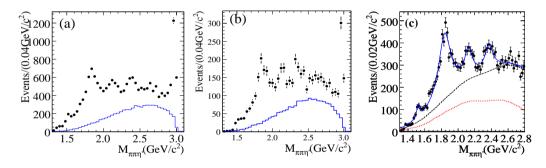

The decay channel of $J/\psi \rightarrow \gamma p\bar{p}$ is also studied, the $p\bar{p}$ mass spectrum, as shown in Fig. 2(a)) has similar structure as Fig. 1(a)). In Fig. 2(b), the fitting in the $p\bar{p}$ mass spectrum with *S*-wave BW function can yield a peak mass of $M = 1861.6 \pm 0.8$ (stat) MeV/ c^2 and a width of $\Gamma < 8 \text{ MeV}/c^2$ at the 90%*C.L.* In the study of $\psi' \rightarrow \gamma p\bar{p}$, there is no significant narrow threshold enhancement as

Figure 2: The $p\bar{p}$ invariant mass spectrum (a) and fitting in the threshold region (b) for the selected $J/\psi \rightarrow \gamma p\bar{p}$ events, where the solid curve is the fit result; the dashed curve shows the fitted background function. (c) is the $p\bar{p}$ invariant mass spectrum in the threshold region for the selected $\psi' \rightarrow \gamma p\bar{p}$ events.

shown in Fig. 2(c). It indicates that the strong $p\bar{p}$ threshold enhancement observed in J/ψ radiative decay disfavors the interpretation of pure final state interactions (FSI).

3. Confirmation of X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ decays

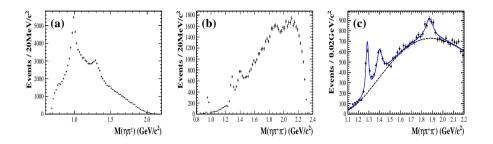


Figure 3: Invariant mass spectrum of $\pi^+\pi^-\eta'$ after final selection for $J/\psi \to \gamma \pi^+\pi^-\eta'(\eta' \to \gamma \rho^0)$ (a) and $J/\psi \to \gamma \pi^+\pi^-\eta'(\eta' \to \pi^+\pi^-\eta, \eta \to \gamma \gamma)$ (b), where the solid circles are data and the histogram are from $J/\psi \to \gamma \pi^+\pi^-\eta'$ phase space MC events(with arbitrary normalization). (c) is mass spectrum fitting with four resonances, the dash-dot line is contributions of non- η' events and the $\pi^0\pi^+\pi^-\eta'$ background for two η' decay modes and the dash line is contributions of background and non-resonant $\pi^+\pi^-\eta'$ process.

For $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ with the decay modes of $\eta' \rightarrow \gamma \rho$ and $\eta' \rightarrow \pi^+ \pi^- \eta$, the X(1835) resonance is clearly seen in the $\pi^+ \pi^- \eta'$ invariant mass spectrum of Fig. 3(a) and (b). Additional peaks are evident around 2.1 and 2.4 GeV/ c^2 , the X(2120) and X(2370), as well as $f_1(1510)$ and a distinct signal for the η_c . The spectrum fits for the combined two η' decay modes have been made using four efficiency-corrected Breit-Wigner functions convolved with a Gaussian mass resolution plus non-resonant $\pi^+\pi^-\eta'$ contribution and background representations shown in Fig.3(c). The statistical significance of the X(1835) is larger than 20σ , while the X(2120) and X(2370), are larger than 7.2 σ and 6.7 σ , respectively. The mass and width are 1838.1 ± 2.8 and 179.5 ± 9.1 MeV/ c^2 for the X(1835), 2124.8 ± 5.6 and 101 ± 14 MeV/ c^2 for the X(2120), 2371.0 ± 6.4 and $108 \pm 15 \text{ MeV}/c^2$ for the X(2370) respectively. For the X(1835), the mass is consistent with the BESII result, but the width is significantly larger.

4. Observation of $X(1870) \rightarrow a_0 \pi$ in $J/\psi \rightarrow \omega \pi^+ \pi^- \eta$ decays

For $J/\psi \to \omega \pi^+ \pi^- \eta$ decays, as shown in Fig.4, in the $\pi^+ \pi^- \eta$ mass spectrum of Fig.4.(b), besides the η' , there are clear $f_1(1285)$, $\eta(1405)$ a structure the X(1870). Fig.4.(c) shows all of the three structures decay primarily via $a_0(980)\pi$, and the fitting yields the mass and width are 18373 ± 11 and $82 \pm 19 \text{ MeV}/c^2$ for the X(1870) with significance of 7.7σ

Figure 4: The selected $J/\psi \rightarrow \omega \pi^+ \pi^- \eta$ events: (a) The combined $\eta \pi^+$ and $\eta \pi^-$ mass spectrum; (b) The $\eta \pi^+ \pi^-$ mass spectrum; (c) The $\eta \pi^+ \pi^-$ mass spectrum fitting with a_0 selection;.

5. Summary

In summary, the $p\bar{p}$ mass threshold enhancement X(1860) is confirmed in J/ψ radiative decay, and no obvious similar structure is observed in ψ' radiative decay. The X(1835) is confirmed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, and two new resonances, X(2120) and X(2370) are observed with significance larger than 7.2 σ and 6.7 σ respectively. A new process $J/\psi \rightarrow \omega X(1870) \rightarrow \omega a_0 \pi$ is observed. Whether or not the X(1860), X(1835) and X(1870) are the same resonance, still needs further study and PWA is a important technique not only to determine the spin-parities of above three resonances, but also to make more precise measurements on masses, widths and Branch ratios by considering possible interferences among them.

References

- [1] BES Collaboration, J.Z. Bai et al., Phys. Rev. Lett. 91, 022001 (2003).
- [2] M.Z. Wang et al., Phys. Rev. Lett. 92, 131801 (2004).
- [3] BES Collaboration, M. Ablikim et al., Phys. Rev. Lett. 99, 011802 (2007).
- [4] CLEO Collaboration, S.B. Athar et al., Phys. Rev. D 73, 032001 (2006).
- [5] BES Collaboration, M. Ablikim et al., Eur. Phys. J. C53, 15, (2008).
- [6] A. Datta and P.J. O'Donnell, Phys. Lett. B567, 273 (2003); B. Loiseau and S. Wycech, Phys. Rev. C72, 011001 (2005);
- [7] BES Collaboration, M. Ablikim et al., Phys. Rev. Lett. 95, 262001 (2005).
- [8] N. Kochelev and D. P. Min, Phys. Lett. B 633, 283-288 (2006).
- [9] T. Huang and S. L. Zhu, Phys. Rev. D 73, 014023 (2006).
- [10] E. Klempt and A. Zaitsev, Phys. Rep. 454, 1-202 (2007).