
P
o
S
(
I
C
H
E
P
 
2
0
1
0
)
1
9
3

Charm mixing in the Standard Model

Markus Bobrowski∗†
Institute for Theoretical Particle Physics, Karlsruhe Insitute of Technology
76128 Karlsruhe, Germany
E-mail: markus.bobrowski@kit.edu

Alexander Lenz
Theoretical Physics T3, TU Dortmund
44221 Dortmund, Germany
E-mail: alexander.lenz@tu-dortmund.de

In this talk we report on a study on the mixing of neutral charmed mesons and argue that, at the

present stage, a CP violating weak phase of the order of some per mille can not be excluded in

the Standard Model. It is shown how some, seemingly reasonable, simplifying assumptions about

CKM couplings lead to the wrong conclusion that CP violationof this amount is an unambiguous

indication of new physics.

The presented results rely on a recent short-distance analysis of the∆C = 2 transition, which con-

firms the expectation that the dominant contribution is due to effects of flavour symmetry break-

ing appearing in higher orders of the Heavy Quark Expansion.We investigate meson-antimeson

transitions with an intermediate state coupling to the meson’s sea quark background, present in

dimension 10 and 12, using a factorisation approach to simplify the operator basis. On account

of a lifting of GIM suppression by one power ofms/mc, the contribution toy = ∆Γ/2Γ is found

to exceed that of the formally leading dimension six by a factor close to ten.
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1. Introduction

Flavour oscillations of neutral mesons arise in presence ofnon-zero mass and width differences
∆M and∆Γ between the long- and short-lived mass eigenstate components. First evidence forD0

oscillations was reported in 2007 byBelle and BABAR, and later confirmed by CDF [1]. HFAG
quotes the current world average for theD0 mixing rates to bex ≡ ∆M/Γ = (0.59±0.20)% and
y ≡ ∆Γ/2Γ = (0.80±0.13)% [2]. On the theory side, two approaches are known to predictthese
quantities: in the inclusive approach, the∆C = 2 transition amplitude is determined at quark-level
in the full Standard Model [3, 4]. The calculation relies on the Heavy Quark Expansion (HQE),
an expansion of the effective Hamiltonian into a series of local operators of increasing dimension.
An alternative possibility is to obtain the width difference from an exclusive sum over hadronic
intermediate states [5], requiring the knowledge of many decay amplitudes and strong phases to a
high precision. At present, none of these approaches leads to completely satisfying results.

2. Dimension six and seven

Diagonalisation of the 2×2 mixing HamiltonianĤ = M̂ + i Γ̂/2 relates mass and width dif-
ference to the off-diagonal elementsM12 andΓ12. This study reports on a calculation ofΓ12 in an
HQE framework,i.e. as an expansion into a series of operatorsQD of mass dimensionD:

Γ12 =
1

2MD0
Im i

∫

d4x
〈

D̄0
∣

∣ T H (x)H (0)
∣

∣D0〉 =
∞

∑
D=0

(

Λ
mc

)D

GD 〈QD〉. (2.1)

First contributions toΓ12 appear forD = 6, associated with the absorptive part of the∆C = 2 box
diagram. Prior to this work, the Wilson coefficientsGD have been known up toD = 8 and at next-to-
leading order QCD. The GIM mechanism, an effect of CKM hierarchy and residual SU(3)F quark
flavour symmetry, requires these contributions to be very small in the Standard Model: expanding
with respect to the CKM structure and using the unitarity of the CKM matrix,Γ12 can be written as

Γ12 = −λ 2
s

(

Γss
12−2Γsd

12+ Γdd
12

)

+2λsλb

(

Γsd
12−Γdd

12

)

−λ 2
b Γdd

12, (2.2)

whereλq = V ∗
cqVuq. The CKM couplingsλs = O(λ ) andλb = O(λ 5) induce a hierarchy in powers

of the Wolfenstein parameterλ ' 0.2255. In the limit of exact SU(3)F symmetry the linear combi-
nations in brackets cancel to zero. SU(3)F breaking effects enter as terms proportional to powers of
z = m2

s (mc)/m2
c(mc). Residual flavour symmetry gives rise to cancellations downto terms of order

z2 in the CKM-leading, and of orderz, respectively, in the CKM-subleading contribution,i.e.

Γ12 = −(1.15z2−59.7 z3) λ 2
s −5.5 λsλb z−1.96λ 2

b ' λ 9.0 + λ 8.0 + λ 9.5. (2.3)

Numerically, we findΓ12 = −(0.20−0.16i) ·10−5, and accordinglyy ≤ |Γ12| · τD ' 10−6 [6], in
agreement with previous studies. If the experimental average for y remains at its current central
value, this is orders of magnitude too small. We remark that commonly the small imaginary parts
of λd andλs are neglected, which is equivalent to settingλb/λs ' 0 in (2.2). Γ12 then is found
to be real with high accuracy. Yet actually SU(3)F symmetry is efficient enough to make the
second term in (2.2) even exceed the first one, such that the approximationλb � λs certainly is
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Figure 1: Contributions to the∆C = 2 transition formally appearing in dimension 6, 9 and 12 in the HQE.
Crosses indicate intermediate states coupling to the diquark condensate.

not justified. Keeping all CKM factors exactly, argλb = 1.17 introduces an order one phase to
Γ12. We therefore think that strong claims, CP violation of the order of 1‰ was an unambiguous
sign of new physics, should be met with some caution. As to an understanding of the remarkable
deviation of theD = 6, 7 quark-level result from experiment, four main lines of argumentation are
common: (1) One could suspect the malfunction of heavy quark methods at the charm threshold,
where QCD may become unmanageable and the inverse quark massmay no longer be a suitable
expansion parameter. To investigate the behaviour of the perturbative expansion in QCD and 1/mc,
we calculated theO(αs) andD = 7 corrections to theΓab

12 and found them to be below∼ 25%.
Although we certainly must not expect a precision prediction of D0 mixing rates, this does not seem
to us as an indication for a breakdown of the expansion.(2) Valence quark dynamics may cease
to offer a reliable description for the hadron-level transition and non-perturbative long-distance
dynamics, violating quark hadron duality, may become important. The dominant contributions to
the∆C = 2 transition in this case would not be captured by the HQE approach.(3) There are reasons
to expect SU(3)F-breaking effects in higher orders of the HQE, which could drastically enhance
Γss

12− 2Γsd
12+ Γdd

12 andΓsd
12−Γdd

12. (4) And finally: also new physics could be responsible,e.g. by
violating the 3×3 unitarity of the CKM matrix [7] or by intruducing right-handed charged currents.

A more definite statement about the reliability of heavy quark methods could be provided by
a future calculation of charmed meson decay widths; they receive the leading contribution from
the spectator model charm decayΓ0(c) in D = 3, where GIM suppression is absent. For the time
being, a first estimate can be obtained from a comparison of lifetime ratiosτ(D+)/τ(D0)' 2.5 and
τ(D+

s )/τ(D0) ' 1.2 to experiment: writingΓ = Γ0(c)(1+ δ ) and neglecting the small difference
in phase space between the decays ofD+ andD+

s , we extract that the leading order HQE is off by
δ (D0) = +17%,δ (D+) = −53% andδ (D+

s ) = −3%, respectively. Albeit in no way compulsive,
this supports the expectation that the HQE should at least reproduce the correct order-of-magnitude.
Note that this estimation is largely free of hadronic uncertainties, which cancel withΓ0(c).

3. Flavour symmetry breaking in higher dimensions

Formally, the smallness of the∆C = 2 box diagrams is due to the fact that one mass insertion
per internal fermion line is required to break the SU(3)F flavour interference in (2.2), and a second
one to compensate the chirality flip—leading to the double GIM suppression present in (2.3). It
should, in accordance, be possible to lift one order of GIM suppression by cutting one of the internal
fermion lines, allowing the loose ends to couple to the meson’s sea quark and gluon background.
Diagrams of this kind appear in dimensionD ≥ 9 andD ≥ 12, respectively, and commonly have
been expected to be the dominant contributions within the HQE [3].

This work considers diagram topologies with one intermediate state coupling to the low-energy
background (cf. Fig. 1), contributing atD ≥ 9. We propose a factorisation approach to estimate the
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meson state matrix elements of the appearing six-quark operators: we assume vacuum saturation
for the coupling of the quark fields from the intermediate state, viz. we model the meson’s non-
valence substructure with the vacuum condensate, neglecting the effect of higher excitations. Doing
so reduces the operator basis toQ = uLγµcL ⊗uLγµcL andQS= uR cR⊗uR cR. To overcome SU(3)F

interference, the effect of the diquark condensate has to beincluded up to next-to-leading order in
the spatial separation between the quark fields,

= 〈 0
∼

| : q(x)⊗q(0) : | 0
∼

〉 = −
〈qq〉
4Nc

× 1c

(

1D −
i m
4

/x

)

. (3.1)

Within this setup, non-vanishing contributions appear inD = 10 andD = 12. As expected, we find
smallO(1%) corrections to theΓab

12, which reveal a pronounced breaking of SU(3)F symmetry and
survive as large effects after the flavour cancellations in (2.2). Numerically,

δΓ12 = −(1.8+0.1i) ·10−5 = −0.43λ 2
s z

3
2 +0.38λsλb z

1
2 ' λ 7.3 + λ 8.2. (3.2)

Note that the contribution to the CKM leading partΓss
12−2Γsd

12+ Γdd
12 exceeds itsD = 6 value by

a factor of 13. The prediction for the mixing ratey likewise is enhanced by a factorO(10) to
y . 0.9 · 10−5. The weak phase argΓ12 still remains at the level of∼ 3%. In the light of these
results, CP violation at the per cent level does not seem unnatural in the〈qq〉 contribution.

4. Future perspectives

Our results are valid in the limit of factorisation and vacuum saturation of the sea-quark con-
tribution. Non-factorisable contributions still need to be quantified. A similar calculation forM12

is subject of ongoing work. A result forM12 will allow definite predictions ofy and the physical
weak phaseφ = arg(−M12/Γ12). Further efforts could also be directed towards diagram topologies
with an intermediate coupling to the four-quark condensate(D ≥ 12), from which a second order
of flavour violation can be expected, possibly associated with an even larger enhancement ofy.
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