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1. Introduction

The potential between two heavy quarks has been among the first appliaii&othe formu-
lation of QCD. At leading order it is given by the exchange of a Coulombrgluad can — after
obvious modifications — be obtained from the potential of the hydrogen atom: &hd two-loop
corrections have been considered in Refs. [1, 2, 3, 4, 5, 6] arelihem@educed numerically sizable
effects in quarkonium physics (see, e.g., the review Ref. [7]). SiA88 there has been a raising
interest in the three-loop corrections. The fermionic corrections hawe templeted in 2008 [8]
and in 2009 two independent groups [9, 10] have completed the pureliaalhree-loop part. In
Refs. [8, 9] the calculation has been performed in a covariant gauhtarindependence of the
final expression on the gauge parameter has been a crucial chelk fmrrectness of the result.

2. Outline of the calculation

The calculation of the static potential requires the evaluation of the fout-paiplitude of
a heavy quark and anti-quark. Some sample Feynman diagrams are shbignin It is suffi-
cient to consider as a starting point the so-called non-relativistic QCD @GIRQi.e. QCD with
hard degrees of freedom integrated out. In this limit the heavy quarlagedprs represent static
colour sources with propagatorgfy whereas the gluons and light quarks are still relativistic. The
only dimensionful scale in the problem is the momentum transfer between tkg heark and
anti-quark and thus momentum integrals can be represented by two-puoitiohs. In Fig. 2 the
different cases of the scalar two-point integrals up to three loops avensh

In case the static lines are absent the problem of computing the corréspamegrals up to
three loops has been solved many years ago [11] and a public code BKISEGER [12] which
can easily be included in all computational frameworks. The presence efdlic lines, however,
makes the practical evaluation quite difficult and an explicit solution of therreace problem (as
implemented in Ref. [12]) is not available. Furthermore, the master integeatsganificantly more
complicated due to the occurrence of the static lines.

In Refs. [8, 9] the reduction of all occurring integrals to a small set oftemdategrals has
been achieved with the help of the progr&inRE [13] which can be linked to a database and
thus handle non-trivial problems in a quite efficient way. In our case Ugtmdices have to be
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Figure 1: Sample diagrams contributing to the static potential &-tevel, one-, two- and three-loop order.
Solid and curly lines represent quarks and gluons, resgdgtiln the case of closed loops the quarks are
massless; the external quarks are heavy and treated iratielishit.
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Figure 2: Scalar one-, two- and three-loop diagrams. The solid liaeds for massless relativistic propaga-
tors and the zigzag line represents static propagators.

considered: 8 6 = 14 indices from relativistiv and non-relativistic propagators, respelgtiand
in addition one index from an irreducible numerator (see Fig. 2). Thdgmoban be simplified by
considering a partial fractioning in those cases where three static linesnreet vertex and by
linear relations between four static propagators which leads to at moststiateepropagators at
three loops thus reducing the total number of indices to twelve. We haverpexd the calculation
in both ways. In the first option with up to 15 indices only little manual work is ingdlvhowever,
significantly more computer resources are needed than in the twelve-ipgeaah. In the latter
case one has to provide several relations implemeting the partial fractionargioned above) and
symmetry relations to end up with a small set of different case to be condifterthe reduction.
The fact that the final results in both approaches agree constitutesig streck on our result.

After the reduction one ends up with 41 master integrals for which an exm@gaittris needed.
Nine integrals are quite simple and can essentially be obtained from the ehevaioop results.
14 integrals contain a massless one-loop diagram which can be integratedding to a two-loop
integral with an exponent depending on the space-time dimeuwksidinese integrals are already
quite involved and have been presented in Ref. [14]. The remaining 1ahdeare genuinely
of three-loop order and involve a nontrivial calculation to obtain theirltesMl but three e =
(4—d)/2 coefficients could be computed analytically; the corresponding analyésalts have
been presented in Ref. [15]. The three missing coefficients are knatlwmwumerically precision
sufficient for all foreseeable applications.

3. Static potential to threeloops

Let us finally present the result for the static potential. We refrain froatydical results which
can be found in Refs. [8, 9] but immediately sh@wd|) in numerical from:

 4nCeas(|d))

03 Os\ 2 2
V([d]) = 2 1+ o (2.5833-0.277&) + <F> (28.5468— 4.1471n 4+ 0.077n; )

(%) oo - oo
+(7) (209884(1) ~ 514048y +2.90617 —0.021477) + - |, (3.1)

wherep? = G2 has been adopted in order to suppress the infrared logarithm and thestligisote
higher order terms ims. It is interesting to note that the term “209” in the three-loop coefficient
receives a large contribution (“211”) from the term with colour fa@‘:@rwhereas the new colour
structured@®cdd3bcd only contributes with a coefficient*2”. From Eq. (3.1) we observe at one-,
two- and three-loop order a large screening of the non-fermionic catitits by then, terms
which is most prominent in the three-loop coefficientipe 5.

In Tab. 1 we show the numerical evaluation of the square bracket df3El).for the charm,
bottom and top quark case, i.e. far= 3,4 and 5, adopting the appropriate valuesogf For
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n ‘ al™ ‘ 1 loop ‘ 2 loop ‘ 3 loop

31040 | 0.2228 | 0.2723 | 0.1677
4 | 0.25| 0.1172 | 0.08354| 0.02489
5 | 0.15 | 0.05703| 0.02220| 0.002485

Table 1. Radiative corrections to the potent\a(|f|) where the tree-level result is normalized to 1. In the
second column we also provide the numerical valueptorresponding to the soft scale wheres myas
(mg being the heavy quark mass).

charm the three-loop corrections are almost as big as the one- and tvodotributions whereas
for bottom the three-loop contribution is already a factor of four smaller thatwo-loop one. In
the case of the top quark one observes a good convergence: théotbpderm is already a factor
ten smaller than the two-loop counterpart.

To summarize, the three-loop corrections to the static heavy quark poteetalailable and
can now be used for the prediction of the top quark threshold produdtfudure linear collider
with third-order accuracy, for the precise extraction of the bottom goags fromY sum rules,
and for the comparison of the potential with results obtained on the lattice intordain insight
to the validity of perturbation theory.
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