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Measurement of Γee(J/ψ) ·B(J/ψ → e+e−) and
Γee(J/ψ) ·B(J/ψ → µ+µ−)

Evgeny M. Baldin for the KEDR Collaboration∗

Budker Institute of Nuclear Physics, Novosibirsk, Russia
E-mail: E.M.Baldin@inp.nsk.su

The products of the electron width of theJ/ψ meson and the branching fraction of its decays to
the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-
positron collider. The results are

Γee×Γee/Γ = 0.3323±0.0064(stat.)±0.0048(syst.) keV,

Γee×Γµµ/Γ = 0.3318±0.0052(stat.)±0.0063(syst.) keV.

Their combinations

Γee× (Γee+Γµµ)/Γ = 0.6641±0.0082(stat.)±0.0100(syst.)keV,

Γee/Γµµ = 1.002±0.021(stat.)±0.013(syst.)

can be used to improve the accuracy of the leptonic and full widths of theJ/ψ and test leptonic
universality in its decays.
Assumingeµ universality and using the world average value of the leptonbranching fraction, we
also determine the leptonicΓℓℓ = 5.59±0.12keV and totalΓ = 94.1±2.7keV widths of theJ/ψ
meson. Details can be found in [1].
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1. Experiment description

A data sample used for this analysis comprises 230 nb−1 collected at 11 energy points in the
J/ψ energy range during the KEDR experiment at the VEPP-4M electron-positron collider. This
corresponds to approximately 15000J/ψ → e+e− decays. During this scan, 26 calibrations of the
beam energy have been done using resonant depolarization.

2. Theoretical e+e− → ℓ+ℓ− cross section

The analytical expressions for the cross section of the processe+e− → ℓ+ℓ− with radiative
corrections taken into account in the soft photon approximation were firstderived by [2]. With
some up-today [3] modifications one obtains in the vicinity of a narrow resonance:
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where a correctionδsf follows from the structure function approach of [4].
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HereW is the center-of-mass energy andΠ0 represents the vacuum polarization operator with the
resonance contribution excluded. The terms proportional to ImF and ReF describe the contribu-
tion of the resonance and the interference effect, respectively.

3. Data analysis

At the i-th energy pointEi and thej-th angular intervalθ j , the expected number ofe+e− →

e+e− events was parameterized as

Nexp(Ei ,θ j) =RL ×L (Ei)×
(

σ theor
res (Ei ,θ j) · εsim

res (Ei ,θ j)+

σ theor
inter (Ei ,θ j) · εsim

inter(Ei ,θ j)+σsim
Bhabha(Ei ,θ j) · εsim

Bhabha(Ei ,θ j)
)

.

whereL (Ei) — the integrated luminosity measured by the luminosity monitor at thei-th energy
point;σ theor— the theoretical cross sections for resonance, interference and Bhabha contributions,
εsim — the detector efficiencies obtained from simulation.

In this formula the following free parameters were used: the productΓee× Γee/Γ, which
determines the magnitude of the resonance signal; the electron widthΓee, which specifies the am-
plitude of the interference wave; the coefficientRL , which provides the absolute calibration of
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Figure 1: Fits to data fore+e− → e+e−. Figure 2: Fit to data fore+e− → µ+µ−.

the luminosity monitor. The dominant uncertainty of theΓee×Γee/Γ result is associated with the
luminosity monitor instability.

The expected number ofe+e− → µ+µ− events was parameterized in the form:

Nexp(Ei) =RL ×L (Ei)×
(

σ theor
res (Ei) · εsim

res (Ei)+

σ theor
inter (Ei) · εsim

inter(Ei)+σ theor
bg (Ei) · εsim

bg (Ei)
)

+Fcosmic×Ti ,

with the same meaning ofRL andL (Ei) as fore+e− → e+e−. RL was fixed from thee+e− →

e+e− fit andTi is the live data taking time.
The following free parameters were used: the productΓee×Γµµ/Γ, which determines the

magnitude of the resonance signal; the square root of electron and muon widths
√

ΓeeΓµµ , which
specifies the amplitude of the interference wave; the rate of cosmic events,Fcosmic, that passed the
selection criteria for thee+e− → µ+µ− events. The dominant uncertainty of theΓee×Γµµ/Γ
result is associated with the absolute luminosity calibration done in thee+e−-channel.
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