
P
o
S
(
I
C
H
E
P
 
2
0
1
0
)
2
4
5

Symmetries in the angular distribution of exclusive
semileptonic B decays∗

Tobias Hurth†

Institute for Physics, Johannes Gutenberg-University, D-55099 Mainz, Germany
E-mail: tobias.hurth@cern.ch

Ulrik Egede
Imperial College London, London SW7 2AZ, United Kingdom
E-mail: u.egede@imperial.ac.uk

Joaquim Matias
Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
E-mail: matias@ifae.es

Marc Ramon
Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
E-mail: mramon@ifae.es

Will Reece
CERN, Dept. of Physics, CH-1211 Geneva 23, Switzerland
E-mail: will.reece@cern.ch

We discuss a method to construct observables protected against QCD uncertainties based on the

angular distribution of the exclusiveBd → K∗0(→ Kπ)l+l− decay. We focus on the identification

and the interpretation of all the symmetries of the distribution. They constitute a key ingredient to

construct a set of so-called transverse observables. We work in the framework of QCD factoriza-
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T emerges as an improved version of it.
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1. Introduction

The next decade will be hopefully dominated by the new physics discoveries at LHC. In this
scenario flavour physics will play an important and complementary role to direct discovery, by
exploring the flavour sector of the theory that lies beyond the SM. Rare B decays are sensitive
probes to new physics signals (for a recent review see Ref. [1]). Amongst them the semileptonic
exclusive decayB→ K∗l+l− is particularly important due to its very rich phenomenology. Some
of the observables constructed out of this decay are: the forward-backward asymmetry,AFB, and
its zero [2, 3, 4], the isospin asymmetry,AI , [5, 6], and the transverse observablesA(i)

T (i=2,3,4,5)
based on the four-body angular distribution when theK∗ decays into aKπ pair [7, 8, 9, 10]. Also
the coefficients of the angular distribution [11] or ratios between differentq2 regions [12] are used
to define observables. The main focus of this paper is to provide a guideline for the construction
of transverse observables (A(i)

T ). These observables maximize the sensitivity to new physics and, at
the same time, exhibit a minimal hadronic uncertainty, in particular, to the poorly known soft form
factors.

2. General method

In this section we will describe the basis of the method recently completed in [10] to construct
robust transverse1 observables. The method is sufficiently general to be applied to angular distri-
butions with similar properties. The steps of the method are: 1) use the helicity amplitudes of the
K∗ as the key ingredients to construct a quantity where the softform factor dependence cancels at
LO (amplitudes in the large recoil limit are very useful to check this cancellation) 2) identify all
symmetries of the distribution with respect to transformations of theK∗ spin amplitudes 3) check
that the constructed quantity fulfils all the symmetries to identify it as an observable 4) express the
observable in terms of the coefficients of the distribution.As a by-product of the method hidden
correlations between the coefficients of the distribution may arise. These correlations have proven
to be important for the stability of the fit and also provide a powerful extra experimental check.

Our main source of information is the differential decay distribution of the decaȳBd → K̄∗0(→
K−π+)l+l− with theK∗0 on the mass shell. This distribution is a function of four variables

d4Γ
dq2 dcosθl dcosθK dφ

=
9

32π
J(q2,θl ,θK ,φ) (2.1)

whereq2 = s is the square of the lepton-pair invariant mass,θl is the angle between~pl+ in l+l−

rest frame and di-lepton’s direction in rest frame ofB̄d, θK is the angle between~pK− in theK̄∗0 rest
frame and direction of thēK∗0 in rest frame ofB̄d, and finallyφ is the angle between the di-lepton
plane and theK−π plane. The functionJ(q2,θl ,θK ,φ) splits into the following coefficients of the
distribution [10, 11]

J(q2,θl ,θK ,φ) =

J1ssin2 θK +J1ccos2 θK +(J2ssin2θK +J2ccos2θK)cos2θl +J3sin2θK sin2θl cos2φ +

1Indeed onlyA(2)
T andA(5)

T are strictly transverse observables,A(3)
T andA(4)

T being also sensitive to the longitudinal
spin amplitudes should, for consistency, be called transverse/longitudinal observables.
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+J4sin2θK sin2θl cosφ +J5sin2θK sinθl cosφ +(J6ssin2θK +J6ccos2θK)cosθl +

+J7sin2θK sinθl sinφ +J8sin2θK sin2θl sinφ +J9sin2θK sin2 θl sin2φ .

These coefficientsJi with i = 1s,1c,2s,2c,3−5,6s,6c,7−9 are in turn functions of the amplitudes
A(L,R)
⊥,‖,0,t,S [10, 11] (A⊥,‖,0 are linear combinations of the well-known helicity amplitudesH+1,−1,0).

The counting of the coefficients of the angular distributionand of the theoretical spin amplitudes
depends on whether scalar interactions are relevant in the analysis or not. If we include them we
have 8 complex amplitudes (A⊥,||,0,(L,R)S,t ) and 12 experimental inputs (Ji), while if no scalar ampli-
tudes are considered we would have just 7 complex amplitudes(A⊥,||,0,(L,R),t ) and 11 experimental
coefficients (J6c = 0). If we neglect the mass of the lepton in addition, the number of complex spin
amplitudes gets further reduced to 6 (At = 0).

3. Symmetries of the distribution

Experimental (Ji) and theoretical (Ai) degrees of freedom have to match. The equation that
defines this matching isnC−nd = 2nA−ns, wherenC is the number of coefficients of the differential
distribution (Ji), nd is the number of relations between theJi , nA is the number of spin amplitudes,
andns is the number of symmetries of the distribution.

We will focus here on the case of massless leptons with no scalars. The parameters of the
equation are thennC = 11, nd = 3 (J1s = 3J2s, J1c = −J2c, and a third more complex relation),
nA = 6 (spin amplitudes),ns = 4 symmetries. One of the main results in Ref. [10] was to identify
the fourth and last symmetry (three of them were found in Ref.[9]). Moreover, a non-trivial hidden
correlation between the coefficients of the distribution was discovered.

One important question arises at this point: how do we know that there are four symmetries
without having found first the new non-trivial hidden correlation?

In order to count the number of symmetries we define an infinitesimal symmetry transforma-
tion of the distribution:~A′ = ~A+ δ~Swhere

~A =
(

Re(AL
⊥), Im(AL

⊥),Re(AL
‖), Im(AL

‖),Re(AL
0), Im(AL

0),

Re(AR
⊥), Im(AR

⊥),Re(AR
‖ ), Im(AR

‖ ),Re(AR
0), Im(AR

0)
)

.

~Srepresents a symmetry of the distribution if and only if∀i ∈ (J1s...J9) : ~∇(Ji) ⊥~S.
There are as many independent infinitesimal symmetries as linearly independent vectors~Sj ,

with j = 1, ..n satisfying the above constraint. In the case of massless leptons with no scalars four
of those vectors~Sj were found [10]. This is the first proof that four and no more symmetries are
present.

The explicit form of the four continuous independent symmetry transformations2 of the am-
plitudes that leave the differential distribution invariant are [10]:

n
′
i =

[

eiφL 0
0 e−iφR

][

cosθ −sinθ
sinθ cosθ

][

coshiθ̃ −sinhiθ̃
−sinhiθ̃ coshiθ̃

]

ni (3.1)

2Sometimes it might be a non-trivial task to find a continuous symmetry associated to an infinitesimal one.
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AL
⊥ =

[ 4
9J2

1s−J2
3− 1

4J2
6s−J2

9
2
3J1s−J3

]

1
2
eiφL

⊥ AR
⊥ = − (J6s−2iJ9)

2
√

2
3J1s−J3

,

AL
‖ = 0 AR

‖ =
√

2
3J1s−J3

AL
0 =

[

J1c( 2
3J1s−J3)−2J2

4− 1
2J2

7
2
3J1s−J3

]
1
2

eiφL
0 AR

0 = 2J4−iJ7√
4
3J1s−2J3

Table 1: Explicit solution of the spin amplitudes in terms of the coefficients of the distribution for the
massless case without scalars.

where we have definedn1 = (AL
‖ ,A

R
‖
∗
), n2 = (AL

⊥,−AR
⊥
∗
) andn3 = (AL

0,A
R
0
∗
). The first two sym-

metries (phase transformations) are a consequence of the freedom to pick up an arbritrary and
different global phase for the L and R non-interfering amplitudes. The third and fourth symmetry
corresponds to the experimental impossibility to measure asimultaneous change of helicity and
handedness of the current (a helicity +1 state with a left handed current transforms into a helicity
-1 with a right handed current).

But, what have we learnt from using this symmetry approach? The answer to this question is
twofold. On the one side, it basically gives freedom to construct an optimal observable out of the
spin amplitudes. The symmetries allow to bypass the strong restriction of taking each coefficient
of the distribution as an observable and permits to construct the best, i.e. most sensitive to NP,
combination of them. The only requirement to fulfil is that the constructed quantity has to respect
these symmetries (in order to be promoted to an observable).On the other side, the symmetries of
the distribution are necessary to find a solution of the system of the spin amplitudes in terms of the
coefficients of the distribution; in particular it allows usto identify new hidden correlations which
turn out to be important for the stability of the experimental fit.

Indeed we found in Ref.[10] that all the physical information of the distribution is encoded in
the three moduli and the complex scalar products of the vectors ni ,

|n1|2 =
2
3

J1s−J3 , |n2|2 =
2
3

J1s+J3 , |n3|2 = J1c

n1 ·n2 =
J6s

2
− iJ9 , n1 ·n3 =

√
2J4− i

J7√
2

, n2 ·n3 =
J5√

2
− i

√
2J8 .

The symmetries guarantee the invariance of these moduli andscalar products. Using the freedom
given by the symmetries to fix certain parameters to zero, thesystem ofA’s can be solved in terms
of J’s. In particular, we choose the left global phase (φL) such that ImAL

‖ = 0, the right global phase
symmetry (φR) such that ImAR

‖ = 0 (simplicity) and one of the continuousL ↔ R rotationθ to fix
ReAR

‖ = 0. The system is then easily solved as shown in Table 1. Still one last equation remains

ei(φL
⊥−φL

0 ) =
J5

(

2
3J1s−J3

)

−J4J6s−J7J9− i
(

4
3J1sJ8−2J3J8 +2J4J9− 1

2J6sJ7
)

[

2
(

4
9J2

1s−J2
3 − 1

4J2
6s−J2

9

)(

J1c
(

2
3J1s−J3

)

−2J2
4 − 1

2J2
7

)]1/2
.

This equation has two important consequences. First, it represents another proof of the existence
of the fourth symmetry manifesting itself in the freedom to choose eitherφL

⊥ or φL
0 = 0. And second,

the condition of the LHS of this equation being a phase imposethe following non-trivial constrain
on the RHS:

J1c = −J2c = 6
(2J1s+3J3)(4J2

4+J2
7)+(2J1s−3J3)(J2

5+4J2
8)

16J2
1s−9(4J2

3+J2
6s+4J2

9)
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−36J6s(J4J5+J7J8)+J9(J5J7−4J4J8)

16J2
1s−9(4J2

3+J2
6s+4J2

9)
≡ f . (3.2)

We emphasize that this equation holds in the case without scalar amplitudes and under the assump-
tion that the mass of the leptons can be neglected. If scalar amplitudes are relevant (J1c 6=−J2c) the
equation−J2c = f is still fulfilled while J1c 6= f . Taking into account the mass of the leptons, one
can derive a similar expression only if there are no scalar amplitudes included in the analysis. As a
consequence, ifJ1c = f is not fulfilled and large deviations are observed (small deviations may be
due to the massive terms) this would signal the presence of scalars. On the contrary, if the equa-
tion −J2c = f is not fulfilled and large deviations are observed it might point to an experimental
problem.

4. Construction of transverse observables: A(i)
T

Following the previous steps we constructed four differentrobust observables. Two of them
A(2)

T andA(5)
T are only sensitive to the transverse amplitudes, whileA(3)

T andA(4)
T also have sen-

sitivity to the longitudinal spin amplitude. In this section we will focus on the properties of the
former. The computation of spin amplitudesA(L,R)

⊥,‖,0 is done at the NLO level within the frame-
work of QCD-factorization [3] . They are functions of the long-distanceB → K∗ form factors
(A0,1,2(q2),V(q2),T1,2,3(q2)) (see Ref.A [13] for a recent analysis) and of the short-distance Wilson
coefficients (Ceff

7 ,Ceff′
7 ,Ceff

9 ,C10,Ceff
9

′
,C′

10) (for precise definitions see Refs. [9, 10]). In the heavy
quark and largeEK∗ limit all form factors can be expressed in terms of just two soft form fac-
tors ξ⊥(E∗

K) and ξ‖(E∗
K) [14]. However these relations receive two types of corrections: order

αs [3, 6](coming from NLO-QCDf) and power suppressedΛ/mb corrections estimated to be of
O(10%). Both were included in our computation of the spin amplitudes at the NLO level in Refs.
[9, 10].

a
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d
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Figure 1: Left: A2
T in SM (green band) with four NP benchmarks ([10]). Center:AFB for the same cases.

Right: A5
T in the SM and for different values ofCe f f

9 andC′
10 (for more details see Ref.[10]).

The observableA(2)
T was first proposed in Ref. [7]:

A2
T =

|A⊥|2−|A‖|2
|A⊥|2 + |A‖|2

. (4.1)
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It is built to signal deviations from the left-handed structure of the SM:A2
T |SM ∼ 0. We restricted

our analysis to the 1< q2 < 6GeV2 region (its extension toq2 > 14GeV2 was described in [15]).
Some of the most important properties are:

• The soft form factor dependence cancels exactly at LO and a very mild dependence at NLO
is observed.

• In the large recoil limit for the spin amplitudesA(2)
T simplifies to

A2
T ∼ 4Ceff

7
′mbMB

s

∆− + ∆∗
+

2C2
10+ |∆−|2 + |∆+|2

(4.2)

where∆± = C eff
9 + 2mbMB

s (Ceff
7 ±Ceff

7
′
). The strong sensitivity to the coefficientCeff

7
′
of the

electromagnetic chirally flipped operator and an importantenhancement factor 2mbMB/s
around 1 GeV2 are evident.

• The comparison betweenA(2)
T andAFB is particularly interesting: i) WhileA(2)

T is extremely
sensitive to right-handed currents viaC′

7 (and its CP violating phase),AFB shows only a very
mild (for the modulus) or null (for the phase) sensitivity (see also Fig. 1, right and center
plot). ii) Both observables exhibit a zero, or a lack of it, atthe same value ofq2

0 at LO
(but also at NLO) ifCeff

7
′ 6= 0. iii) While AFB is only protected from large soft form factor

uncertainties at its zero,A(2)
T is protected in the whole 1< q2 < 6GeV2 region.

• A(2)
T also serves as an excellent probe for a nontrivialC′

10. The latter implies a completely
differentq2 dependence than a non-zero coefficientC′

7.

• A(2)
T can be measured using the one-angle projected angular distribution in the first run of

data taking with the LHCb experiment and using the full angular distribution afterwards.
See[9, 10] for a discussion of its experimental sensitivity.

The transverse observableA(5)
T , complementary toA(2)

T , was proposed in Ref. [10]:

A(5)
T =

|AR∗
‖ AL

⊥ +AL
‖AR∗

⊥ |
|A‖|2 + |A⊥|2

. (4.3)

• Contrary toA(2)
T , A(5)

T exhibits a combination of left-right and⊥-‖ amplitudes that cannot be
found in any single coefficient of the distribution. Its expression in terms of the coefficients
of the distribution can be found using the explicit solutiondescribed in Sec.2:

A5
T

∣

∣

∣

mℓ=0
=

√

16Js2
1 −9Js2

6 −36(J2
3 +J2

9)

8Js
1

. (4.4)

• In the large recoil limit and assuming a nontrivialC′
10, A(5)

T simplifies to

A(5)
T

∣

∣

∣

10′
=

∣

∣

∣
−C2

10+ |C′
10|2 +

(

2mbMBCeff
7 /q2 +Ceff

9

)2
∣

∣

∣

2
[

C2
10+ |C′

10|2 +
(

2mbMBCeff
7 /q2 +Ceff

9

)2
] . (4.5)
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It implies thatA(5)
T has a maximum value in the SM (C′

10 = 0) of 1/2 near to the position of
the zero ofAFB. If C′

10 6= 0 andC′
10 < C10 the size of the local maximum decreases and its

distance to the SM maximum is given by|C′NP
10 |2/(C2

10+ |C′NP
10 |2). This distance can be used

as a measurement ofC′
10 if C′

10 represents the only contribution beyond the SM (see Fig.1,
left plot).

• Finally, the positionq2
0 of the maximum moves ifCeff

7 or Ceff
9 receives NP contributions like

AFB (see again Fig.1, left plot).

5. Conclusions

We have presented in detail a method to construct observables, using theK∗ spin amplitudes as
building blocks, with high new physics sensitivity and reduced hadronic pollution. It is sufficiently
general to be applied to other angular decays with similar properties. The symmetries of the four-
body decay, that play a central role in this method, are identified and interpreted. Finally, two
observables are constructed fulfilling all the steps of the method and their properties are analyzed.
A2

T emerges as an improved version ofAFB, containing almost all the physical information of it but
in a less QCD polluted way, and it also exhibits a much larger sensitivity to right-handed currents
thanAFB.
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