

Quantum-correlated D-decays at CLEO-c

G. Wilkinson*†

University of Oxford

E-mail: guy.wilkinson@physics.ox.ac.uk

The 818 fb⁻¹ dataset collected at the $\psi(3770)$ resonance at CLEO-c offers interesting possibilities for measuring strong phase differences in neutral D decays. The measurements require that both D mesons in the event are fully reconstructed, usually with one decaying to the signal mode of interest, and the other to a CP-eigenstate. The strong phase differences extracted from these decays are important inputs to measurements of the CKM angle γ in $B \to DK$ decays. Results are presented from D decays into $K_S^0\pi^+\pi^-$, $K_S^0K^+K^-$, and the impact of the γ measurement is discussed. A summary is also given of measurements in other two-three- and four-body modes.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

^{*}Speaker.

[†]On behalf of the CLEO collaboration.

1. Introduction

Studies which seek to determine the CKM angle γ from measuring the CP-violation in $B \to DK$ decays, where D indicates a D^0 or a $\bar{D^0}$ meson which is reconstructed in a common final state, in general require external information on the strong-phase difference between the D^0 and $\bar{D^0}$ decay. Examples include the so-called 'ADS' strategy [1] where the final state is a mode such as $K^{\mp}\pi^{\pm}$ and the strong phase difference is a single number, or the 'GGSZ' approach [2, 3], which uses decays such as $K_S^0h^+h^-$ ($h=\pi$ or K), and the strong-phase difference varies over the Dalitz plot.

The strong-phase difference between D^0 and $\bar{D^0}$ decays may be measured in $e^+e^- \to \psi(3770) \to D\bar{D}$ data in which one meson is reconstructed in the final state of interest, and the other is reconstructed in a CP-eigenstate, e.g. K^+K^- , or $K_S^0\pi^0$. Such threshold production of $D\bar{D}$ pairs means that a quantum correlation exists between the charm mesons, and that if one D is observed (or 'tagged') to be CP-even, then the other must be CP-odd, and vice versa. In this case the final state of interest is therefore a linear superposition of equal amounts of D^0 and $\bar{D^0}$, and thus the decay rate has a dependence on $\cos \Delta \delta_D$, where $\Delta \delta_D$ is the strong phase difference between the two amplitudes. In this manner 'CP-tagged' data from the $\psi(3770)$ can be used to determine these phase differences. The method can be generalised to use as a tag any hadronic final state, as all these modes can be accessed both by D^0 and $\bar{D^0}$ decays.

The CLEO-c experiment collected 818 pb⁻¹ of $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$ data, delivered by the Cornell Electron Storage Ring. These data have been used to make measurements of strong-phase differences needed for the $B \rightarrow DK$ studies which will be performed at LHCb and e^+e^- B-factories. Further measurements of this type will be possible with the BES-III data, where it is expected that the eventual $\psi(3770)$ sample size will be be significantly larger than at CLEO-c.

In Sec. 2 the recent CLEO measurement of the strong phase difference in $D \to K_S^0 \pi^+ \pi^-$ and $K_S^0 K^+ K^-$ decays [6] is discussed. In Sec. 3 a summary is made of other CLEO measurements.

2. Quantum-correlated studies of $D \to K^0_S \pi^+ \pi^-$ and $K^0_S K^+ K^-$ and impact on the γ determination

A proposal to use $\psi(3770)$ data to make a model independent determination of the strong-phase differences in $D \to K_S^0 \pi^+ \pi^-$ decays can be found in [2] and is developed in [4]. A first measurement of these strong-phase differences has been performed by CLEO [5]. A recent update [6], summarised here, supersedes this first set of results, and also extends the study to $D \to K_S^0 K^+ K^-$.

The goal of the analysis is to find the quantities c_i and s_i , which are the amplitude-weighted averages of the cosine and sine of the strong-phase differences between D^0 and $\bar{D^0}$ in bin i of the Dalitz space. These quantities can then be used by other experiments in the analysis of $B \to DK$ data to extract the value of γ in a model independent manner. This approach may be contrasted to the strategy pursued in $B \to DK$ measurements hitherto [7, 8], where the information on the strong-phase differences is obtained from an amplitude model fitted to flavour-tagged $D^* \to D\pi$, $D \to K_S^0 h^+ h^-$ data. The uncertainty associated with the amplitude model is difficult to assess, and therefore is an undesirable feature for future high precision measurements.

In the $K_S^0 \pi^+ \pi^-$ analysis the Dalitz space is divided into eight bins. The binning is defined from the flavour-tagged derived amplitude models developed at the B-factories. (This information

Figure 1: $D \to K_S^0 \pi^+ \pi^-$ binning. Left: BABAR equal $\Delta \delta_D$ binning. Right: modified optimal binning.

Figure 2: Two (a), three (b) and four (c) binning choices for the $D \to K_S^0 K^+ K^-$ analysis.

does not introduce any model dependent bias to the final results. If the models do not represent reality, the measurement will merely have lower sensitivity in the γ measurement than expected.) In order to provide flexibility in the $B \to DK$ studies four different bin choices are considered. In two of these choices, one based on the BABAR model [9], one on the Belle model [8], each bin corresponds to a equal slice of strong-phase difference ('equal $\Delta\delta_D$ binning'). The two other choices ('optimal' and 'modified optimal'), derived from the BABAR model, have binnings which are constructed to provide higher statistical sensitivity in the γ measurement. The 'modified optimal' binning has been optimised assuming a background level in the $B \to DK$ analysis corresponding to that expected at LHCb. Two of these binning choices are show in Fig. 1.

In the $K_S^0 K^+ K^-$ analysis equal $\Delta \delta_D$ binnings are considered for two, three and four bins, all based on the flavour model found in [9]. These binnings are shown in Fig. 2.

The lack of fragmentation particles in threshold $D\bar{D}$ production, and the excellent hermiticity

of the CLEO-c detector, enables final states containing K_L^0 mesons to be reconstructed, where the presence of the K_L^0 is inferred through the kinematics of the other particles in the event. This means that CP-tags such as $K_L^0\pi^0$ can be employed, and also $K_L^0\pi^+\pi^-$ events can be included. To first order a CP-odd $K_S^0\pi^+\pi^-$ decay is the same as a CP-even $K_L^0\pi^+\pi^-$ decay. Small corrections to this equality are accounted for in the analysis and a systematic uncertainty assigned to the final results which is small.

Around 1600 CP-tagged $K^0\pi^+\pi^-$ events are selected, and around 1300 double tagged events of the sort $K_{S,L}^0\pi^+\pi^-$ vs. $K_S^0\pi^+\pi^-$. Quantum-correlations mean that this latter category can also be used in measurement. They are sensitive to c_i and s_i whereas the pure CP-tagged events are only sensitive to c_i .

In the $K_S^0K^+K^-$ analysis around 550 quantum-correlated double tags are used. They include events of the sort $K_{S,L}^0K^+K^-$ vs. $K_S^0\pi^+\pi^-$ and $K_S^0K^+K^-$ vs. $K_L^0\pi^+\pi^-$. In this manner the results of the $K^0\pi^+\pi^-$ analysis is used as a valuable input to the $K_S^0K^+K^-$ study.

The quantum-correlated yields are used to calculate the values of c_i and s_i . In both analyses the statistical errors are the dominant contribution to the overall uncertainty. The results for the $K_S^0K^+K^-$ analysis are shown graphically in Fig. 3. It can be observed that there is reasonable agreement between the measured values and those predicted by the model. A similar picture emerges from the $K_S^0\pi^+\pi^-$ analysis [6].

Toy Monte Carlo studies have been conducted to assess the residual uncertainty in γ analysis that will arise from the finite precision on the values of c_i and s_i . This uncertainty is found to be between 1.7° and 3.9°, depending on the binning, for $K_S^0\pi^+\pi^-$, and between 3.2° and 3.9° for $K_S^0K^+K^-$. These errors are small compared with the expected statistical uncertainties on these measurements at LHCb [10].

3. Other quantum-correlated studies, summary and prospects

The CLEO-c data set has also been used to determine the value of the strong-phase difference in decays to $K^{\mp}\pi^{\pm}$ [11, 12] and the average strong-phase difference and coherence factor [13] in decays to $K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}$ and $K^{\mp}\pi^{\pm}\pi^{0}$.

All these results will be of great benefit in the measurement of the CKM angle γ using $B \to DK$ strategies. They can also be used in model independent charm mixing studies [15]. Similar studies will be performed with decays to $K_S^0 K^{\pm} \pi^{\mp}$ and $K_S^0 \pi^+ \pi^- \pi^0$. In future, these measurements can be repeated with higher statistical precision using data collected by the BES-III experiment.

References

- D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78 (1997) 3257; D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D 63 (2001) 036005.
- [2] A. Giri et al., Phys. Rev. **D 68** (2003) 054018.
- [3] A. Bondar, Proceedings of BINP Special Analysis Meeting on Dalitz Analysis, September 2002, unpublished.
- [4] A. Bondar and A. Poluektov, Eur. Phys. J C 55 (2008) 51; A. Bondar and A. Poluektov, Eur. Phys. J C 47 (2006) 347.

Figure 3: Measured values of c_i and s_i for $D \to K_S^0 K^+ K^-$ data divided into (a) two, (b) three and (c) four equal $\Delta \delta_D$ bins. The expected values calculated from the models used are indicated by the stars. The circle indicates the boundary of the physical region $c_i^2 + s_i^2 = 1$.

- [5] R. Briere et al. (CLEO Collaboration), Phys. Rev. **D 80** (2009) 032002.
- [6] J. Libby et al. (CLEO Collaboration), arXiv:1010.2817 [hep-ex], submitted to Phys. Rev. D.
- [7] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. Lett. 105 (2010) 121801.
- [8] A. Pluektov et al. (Belle Collaboration), Phys. Rev. **D 81** (2010) 112002.
- [9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. **D** 78 (2010) 112002.
- [10] B. Adeval *et al.* (LHCb Collaboration), "Roadmap for selected key measurements of LHCb", arXiv:0912.4179 [hep-ex].
- [11] J.L. Rosner *et al.* (CLEO Collaboration), Phys. Rev. Lett. **100** (2008) 221801; D.M. Asner *et al.* (CLEO Collaboration), Phys. Rev. **D 78** (2008 012001.
- [12] Werner Sun, *Quantum Correlations in Charm Decays*, Physics in Collision, September 2010, Karlsruhe.
- [13] D. Atwood and A. Soni, Phys. Rev. **D** 68 (2003) 033003.
- [14] N. Lowrey et al. (CLEO Collaboration), Phys. Rev. **D 80** (2009) 031105.
- [15] A. Bondar, A. Poluektov and V. Vorobiev, Phys. Rev. D 82 (2010) 034033.