

Testing New TeV-scale Seesaw Mediators at the LHC

Ivica Picek*,1 and Branimir Radovčić1,†

¹Department of Physics, University of Zagreb, Croatia E-mail: picek@phy.hr, bradov@phy.hr

We propose TeV-scale Dirac fermions producing Majorana masses of the known neutrinos via tree-level seesaw, different from standard type I and III seesaw. The employed weak five-plet with nonzero hypercharge leads to new seesaw formula $m_v \sim v^6/M^5$ and to empirical masses $m_v \sim 10^{-1}$ eV for $M \sim$ TeV new states. For a limited range of the parameter space, where $M \leq$ a few 100 GeV, the proposed mechanism is testable at the LHC via characteristic decays of Dirac type heavy leptons, produced by a Drell-Yan fusion.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

*Speaker.

[†]This work is supported by the Croatian Ministry of Science, Education and Sports under Contract No. 119-0982930-1016.

Our model [1] is based on the standard model group (SMG) $SU(3)_C \times SU(2)_L \times U(1)_Y$ content extended by vectorlike Dirac 5-plets of leptons, $\Sigma_{L,R} = (\Sigma^{+++}, \Sigma^{++}, \Sigma^0, \Sigma^-)_{L,R} \sim (1,5,2)$, which form a Dirac mass term $\mathscr{L}_{mass} = -M_{\Sigma}\overline{\Sigma}_L\Sigma_R + H.c.$. They, in conjunction with additional scalar four-plets $\Phi_1 = (\Phi_1^0, \Phi_1^-, \Phi_1^{--}, \Phi_1^{---})$ and $\Phi_2 = (\Phi_2^+\Phi_2^0, \Phi_2^-, \Phi_2^{--}) \sim (1,4,-3)$ and (1,4,-1) respectively, build the gauge invariant Yukawa terms

$$\mathscr{L}_{Y} = Y_{1} \overline{l}_{L} \Sigma_{R} \Phi_{1} + Y_{2} \overline{\Sigma}_{L} (l_{L})^{c} \Phi_{2}^{*} + \text{H.c.}$$

$$\tag{1}$$

Due to the induced vevs v_{Φ_1} and v_{Φ_2} of new scalar fields, the light neutrino acquires a mass

$$m_{\nu} \sim \frac{Y_1 Y_2 \nu_{\Phi_1} \nu_{\Phi_2}}{M_{\Sigma}} = \frac{Y_1 Y_2 \lambda_1 \lambda_2 \nu^6}{M_{\Sigma} \mu_{\Phi_1}^2 \mu_{\Phi_2}^2} \sim \nu^6 / M^5 , \qquad (2)$$

corresponding to seesaw mechanism generated by dimension nine operator shown in the figure.

	Produced 5-plet pair	σ/fb	I
$H^{ }$ $H^{ }$ $H^{ }$ $H^{ }$ $H^{ }$	$\Sigma^{+++}\overline{\Sigma^{++}}$	180	1
`+`	$\Sigma^{++}\overline{\Sigma^{+}}$	270	1
Φ_1 Φ_2	$\Sigma^+\overline{\Sigma^0}$	270	1
	$\Sigma^{+++}\overline{\Sigma^{+++}}$	230	1
ν_L Δ_R Δ_L ν_L	$\Sigma^{-}\overline{\Sigma^{-}}$	210	

The new physics scale Λ_{NP} of our model can be estimated from eq. (2) for some reasonable values of Yukawa and quartic coupling strengths λ_1 and λ_2 , say $Y_1 \sim Y_2 \sim \lambda_1 \sim \lambda_2 \sim 10^{-2}$. Assuming degenerate all high scale mass parameters, we obtain $\Lambda_{NP} \simeq 580$ GeV.

Accordingly, the 5-plet seesaw mediators can be produced by W^{\pm} , Z^0 and γ Drell-Yan processes at the LHC. The associated production of the pairs $(\Sigma^{+++}, \overline{\Sigma^{++}})$, $(\Sigma^{++}, \overline{\Sigma^{+}})$, $(\Sigma^{+}, \overline{\Sigma^{0}})$, $(\Sigma^{0}, \overline{\Sigma^{-}})$ via a charged current would be a crucial test of the five-plet nature of new leptons. Some highest production rates are displayed in the enclosed table for $\sqrt{s} = 14$ TeV (to be reduced by roughly a factor of 5 for the present LHC energy of $\sqrt{s} = 7$ TeV). They are higher than for type III seesaw mediators, because of both additional and enhanced couplings to the gauge bosons.

The produced five-plet states might be recognized via characteristic decays addressed in detail elsewhere [2]. Since these states are characterized by small mass splitting within a multiplet [3], their cascade decays are suppressed. A distinguished triply charged fermion which doesn't mix with SM leptons has a characteristic decay, $\Sigma^{+++} \rightarrow W^+W^+l^+$. The singly charged and neutral states mix with SM particles, so that the produced pairs lead to

$$\Sigma^{+}\overline{\Sigma^{0}} \to l^{+}Zl^{+}W^{-} \to l^{+}l^{+} + 4jets \ , \ \Sigma^{0}\overline{\Sigma^{0}} \to l^{\pm}W^{\mp}l^{\pm}W^{\mp} \to l^{\pm}l^{\pm} + 4jets \ , \tag{3}$$

the lepton number violating decays with same sign dileptons and the jets as an appealing signature.

References

- [1] I. Picek and B. Radovčić, Phys. Lett. **B 687** 338 (2010) [0911.1374 [hep-ph]].
- [2] K. Kumerički, I. Picek and B. Radovčić, [in preparation].
- [3] M. Cirelli, N. Fornengo and A. Strumia, Nucl. Phys. B753 (2006) 178 [hep-ph/0512090].