

Very Short Gamma Ray Bursts Study and Primordial Black Holes

David B. Cline

UCLA Dept. Of Physics & Astronomy P.O. Box 951457, Los Angeles CA 90095 USA E-mail: dcline@physics.ucla.edu

Stanislas Otwinowski

UCLA Dept. Of Physics & Astronomy CERN, CH-1211, Geneve 23, Switzerland E-mail: stanislaw.otwinowski@cern.ch

We present the state of current research of Very Short Gamma Ray Bursts (VSGRBs) from BATSE, KONUS and SWIFT detectors. We found that VSGRBs form a distinguished class of GRBs, which in our opinion in most cases is composed of the primordial black hole evaporation events. Arguments supporting our opinion: (a) Time duration (T_{90}) distribution of VSGRBs for BATSE, KONUS and SWIFT detectors [2]; (b) Visible anisotropy in the galactic angular distribution of BATSE VSGRB events; (c) V/ Vmax distribution for BATSE VSGRB events indicating the local distance production [3]; (d) Practically no afterglows in SWIFT VSGRB sample (25%), in contrast to the noticeable frequency in SGRB sample (78%); (e) Time profile of rising part BATSE VSGRBs in agreement with evaporation PBH model.

35th International Conference of High Energy Physics (ICHEP2010) Paris,France July 22-28, 2 We divide GRB from detector BATSE into three classes according to their time duration (T_{90}) : long L ($T_{90} > 1$ s); short S (1 s > $T_{90} > 0.1$ s); and very short VS ($T_{90} < 0.1$ s), [1]. We assume that the VSGRBs constitute a separate class of GRBs with log normal duration distribution and we fit the time distribution, with a three-population model. The fit is excellent but does not give significant evidence for a three-population model [1].

We have also analyzed SGRBs from the KONUS-WIND detector. Nominal energy range of gamma-ray measurements covers the interval from 12 keV up to 10 MeV. This gives the possibility of comparing SGRBs ($T_{90} < 2$ s) of the Low Energy Data (LED), $\langle \gamma \rangle < 90$ keV, with High Energy Data (HED), $\langle \gamma \rangle > 90$ keV, Fig. 1. LED are normalized to HED in region (0.0 – 1.6 s) and comparing both distribution we see strong disagreement (prob. $< 10^{-10}$). We observe a large excess of VSGRBs with $\langle \gamma \rangle > 90$ keV, Fig. 1. Like BATSE KONUS uses the shortest trigger of 64 ms, so we should observe even bigger excess because the detector lost detection efficiency at $T_{90} < 64$ ms, as in the BATSE case. This is an additional argument to treat VSGRBs as a separate class of events.

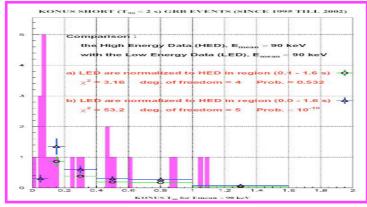


Fig. 1. KONUS data with different cuts on the average energy gamma, $\langle \gamma \rangle$ [2].

Galactic angular distribution for BATSE events [3] for VSGRBs ($T_{90} < 0.1$ s) are strongly grouped in 1/8 of the whole space, giving an excess with probability 0.00007 to be a fluctuation from Poisson distribution. See also Fig. 3.

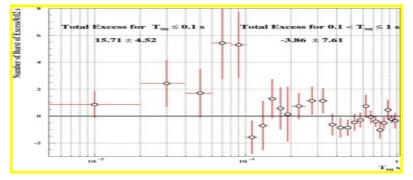


Fig. 2. BATSE GRB events (1991 Apr 21 – 2000 May 26). Excess in GRBs inside the chosen region (30° $< b < -30^{\circ}$; 90° $< l < 180^{\circ}$) as a function of T₉₀ [3].

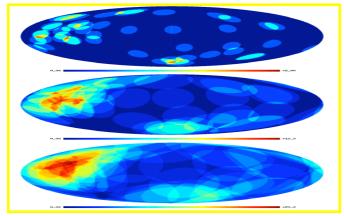


Fig. 3. Angular distribution of the BATSE VSGRB events in Galactic Coordinates within 10° (top), 25° (middle), and 40° (bottom), radius cone around each event [4].

The detailed first four factorial moments analysis gives as a result the probability $< 3 \cdot 10^{-5}$ for the chance of such fluctuation from uniform distribution [4]. This is in agreement with our earlier simple estimation: $7 \cdot 10^{-5}$ [3]. It means the effect itself is on about 4σ level.

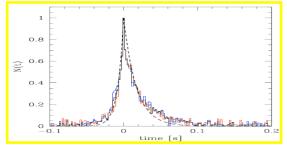


Fig. 4. Composite VSGRB time profile for BATSE; Dashed line – exponential fit [5].

The exponential fit was used twice (separately for rise and for fall). The resulting composite profile is shown in Fig. 4. It shows significant asymmetry with timescale: 0.00079 s for exponential rise and 0.0171 s for exponential decay time. If we use the evaporation PBH model, the fit to the rising part of the profile is good.

References

- D.B. Cline, C. Matthey and S. Otwinowski, Non-Isotropic Angular Distribution for Very Short-Time Gamma-Ray Bursts, UCLA-APH-0124-04-00[astro-ph/0105059].
- [2] D.B. Cline et al, Evidence for Primordial Black Hole Final Evaporation: Swift, BATSE and KONUS and Comparisons of VSGRBs and Observations of VSB That Have PBH Time Signatures, astroph/0908.1352.
- [3] D.B. Cline et al, Study of Very Short GRB: New Results from BATSE and KONUS, ApJ. 633, L73 (2005) [astro-ph/0510309].
- [4] L.W. Piotrowski et al, *Angular Anisotropy of Very Short Gamma Ray Bursts*, <u>http://www.lip.pt/events/2006/ecrs/proc/ecrs06-s5-10.pdf</u>.

[5] B.Czerny at al., *Observational constraints on the nature of very short gamma-ray bursts*, New Astronomy in press, [arXiv:1006.1470].