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Recently, it has been proposed that self-annihilating dark matter could have a significant effect
on the formation and development of the first stars in the universe. In such a model, the energy
released by the self-annihilating dark matter may be the main power source for this class of
young stellar objects called Dark Stars. Their features (e.g. luminosity, temperature, lifetime)
could differ from normal Population III stars and therefore makes them distinguishable. The
contribution from Dark Stars to the extragalactic background light considering multiple initial
parameters is calculated. By comparing our results with existing data and limits of the diffuse
infrared background we can derive observational constraints on Dark Stars in the early universe.
Future observations (e.g. with the forthcoming James Webb Space Telescope) will improve these
results.
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1. Introduction

Astrophysical observations from the last decades hint towards a large mass contribution in
the universe that is of an unknown, dark nature. Large sky surveys (e.g. SDSS [1] , 2dF [2])
and numerical simulations like the Millennium run [3] point towards a convincing scenario of
large scale structure formation within a cold dark matter (DM) model in an accelerated expanding
universe (ΛCDM). A good particle candidate for the DM content is a self-annihilating WIMP
(Weakly Interacting Massive Particle, see e.g. [4, 5] for a review article). These WIMPs could
affect the physics of the first stars in a significant way.

The epoch of the first star formation in the universe is not yet observable with today’s as-
tronomical instruments. The circumstances and mechanisms of these processes are still topics of
ongoing analysis and rely on sophisticated numerical simulations (for a review, see e.g. [6]). In
the last two years several studies discussed the role of WIMP dark matter on the formation of the
first stars [7, 8]. Assuming that self-annihilating particles provide the dark matter content of the
universe, it is obtained that this new source of energy injection into the first stars may alter their
features remarkably. The additional energy injection of these self-annihilating WIMPs delay or
even prevent the nuclear hydrogen burning which is normally the main energy source of stars. Two
mechanisms are available to supply the star with high DM densities: adiabatic contracted DM due
to the gravitational pull from the baryons that form the star (as investigated by [7]) and elastic
scattering between WIMPs and baryons (see e.g. [8]). There can also be the possibility for a com-
bination of these two mechanisms with different relative efficiencies. The exact physical process
that provides the dark matter powered stars (Dark Star; DS) with “fuel” has no great impact on the
results presented here as long as there is a high enough dark matter density in the center of the DS
guaranteed. In both cases the resulting features of these stellar objects can be quite generic: low
surface temperatures, high luminosities and possible enhanced lifetimes compared with Population
III stars [8, 9]. After the “dark phase” the star is thought to evolve as a normal zero age main
sequence star.

Instead of considering the very challenging direct detection of DS (see e.g. [10]), the approach
here is to search for signatures of DS in the diffuse metagalactic radiation field (MRF). The local
optical to infrared part of the MRF is also known as extragalactic background light (EBL, for a
review see e.g. [11]). Its main contribution originates from integrated starlight and thermal dust
emissions of all cosmic epochs. This fact makes the EBL an ideal probe for the star formation
history of the universe and therefore offers a unique possibility to search for emission in the early
universe, e.g. investigated in [12]. There are different types of observational strategies for the EBL.
Lower limits to the EBL are derived from galaxy number counts which are available up to a redshift
≈ 2 from the Hubble Space Telescope [13] and the Spitzer instrument [14]. Upper limits can be
derived from direct observations (COBE [15]), but these are presumably polluted by prominent
foreground emission. A different method for obtaining upper limits on the EBL density makes use
of the spectra from very high energy (VHE) γ-ray sources, in particular blazars (see e.g. [16]).
These limits deliver the possibility to constrain DS scenarios.

For all calculations here a flat Friedmann cosmology is adopted with Ωm = 0.3, ΩΛ = 0.7 and
a Hubble constant of H0 = 70kms−1 Mpc−1.

2



P
o
S
(
C
R
F
 
2
0
1
0
)
0
1
9

Constraints on Dark Stars from the EBL Andreas Maurer

0.1 1 10
Wavelength [µm]

10
24

10
25

10
26

L
ν [

er
g 

s-1
 H

z-1
]

(a) Specific luminosity for a modelled DS atmosphere
(black) and a blackbody (red) with same temperature
and radius. DS parameters are RDS = 2.4× 1012 m,
MDS = 106M�, TDS = 5000K
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(b) Same as in (a). DS parameters are RDS = 1.1×
1012 m, MDS = 690M�, TDS = 7500K

Figure 1: Model spectra used as input parameters. DS properties taken from [9].

2. Method

To calculate the contribution of dark matter powered stars to the extragalactic background light
a forward evolution model is used, similar to [17]. In the following the individual input parameters
of the model are described.

The spectra of DS are calculated with the model atmosphere package PHOENIX, version 16
[18]. For the model atmospheres used here the abundance of H was set to 0.92 by number (mass
fraction: 0.75) and that of He was set to 0.08 by number (mass fraction: 0.25) for all models, all
other elements (including Li) have an abundance of zero in these models. DS spectra with effective
temperatures 5000K and 7500K and with parameters adopted from [9] have been computed (see
Fig. 1).

Independent of the exact mechanism powering the DM burning, models predict a stable phase
which dominates the total radiative output of the DS [7, 8]. During this phase the luminosity is
nearly constant (see e.g. Figure 2 in [9], Figure 4 in [8] and Figure 1 in [19]). The exact length of
the DS lifetime (∆tDS) is highly uncertain and depends on various factors, e.g. DM type, DS model,
DM halo profile, etc (for an extensive discussion see [10]). In this work a wide band of possible
DS lifetimes is explored ranging from 105−109 years.

A crucial parameter, to which the EBL flux is sensitive, is the formation density of DS. This
quantity is directly linked to the cosmic star formation rate (SFR) ρ̇∗(z) for the first stars (Pop III)
which can be expressed as a comoving mass formation rate in units of M� year−1 Mpc−3. For the
model calculations here, a constant SFR for Dark Stars is assumed, ranging from the maximum
(zmax) to the minimum (zmin) redshift of the formation epoch. The linear scaling factor SFRNorm

ranges from 10−7 to 10−3 comparable to typical values obtained for the first stars [20].

The influence of zmax on the resulting EBL is - due to the redshift dilution - negligible and so
in the following its value is set to 30. The investigated range of zmin reaches from 5 to 15 which is
in good agreement to simulated Population III star formation periods [21, 22].
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(a) EBL contribution for different DS lifetimes. DS pa-
rameters are RDS = 2.4×1012 m, MDS = 106M�, TDS
= 5000K
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(b) Same as in (a). DS parameters are RDS = 1.1×
1012 m, MDS = 690M�, TDS = 7500K
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(c) EBL contribution for different values of zmin. DS pa-
rameters are RDS = 2.4×1012 m, MDS = 106M�, TDS
= 5000K
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(d) Same as in (c). DS parameters are RDS = 1.1×
1012 m, MDS = 690M�, TDS = 7500K

Figure 2: EBL signatures for two DS models. The resulting EBL fluxes for different DS lifetimes (∆tDS)
and minimum redshifts of the DS formation epoch (zmin) are shown.

∆tDS zmin SFRNorm

min 105 15 10−7

fiducial 107 10 10−5

max 109 5 10−3

Table 1: Dark Star parameter range

3. Results & Conclusion

The resulting contribution to the extragalactic background light is calculated for different sets
of parameters. Both spectra of Dark Stars presented in Fig. 1 are taken as model input and a wide
range of possible signatures in the infrared background are calculated. This is shown in Fig. 2;
while varying one parameter in its assumed range, the others are set to a fiducial value. The details
of the parameters are presented in table 1.

As SFRNorm merely acts as a linear scaling factor, no plots for different values of it are shown.
By varying the end of the Dark Star formation period two effects on the background flux can be
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observed (Fig. 2(c) and Fig. 2(d)). Decreasing zmin leads to less dilution in the background photon
density, which goes as (1+z)−3, and therefore the total yield to the extragalactic background light is
increased. The second consequence is a wavelength dependency for the peak value of the resulting
signature. This is caused by a non-zero value of the comoving luminosity density (emissivity) at
lower redshift that leads to less redshifted peak wavelengths.

The influence of different Dark Star lifetimes is displayed in Fig. 2(a) and Fig. 2(b). For
lifetimes smaller than the formation period t(zmin)− t(zmax) the resulting background light scales
linearly with increasing ∆tDS. At higher lifetimes than ∼ 108years the yield to the diffuse photon
field is increased to a greater amount as well as the peak value of the Dark Star signature is shifted
towards lower wavelengths. This is caused by a non-vanishing emissivity at redshifts z < zmin.
If ∆tDS is short enough, the end of the Dark Stars formation epoch will be roughly equal to the
time when the Dark Stars cease to emit photons as the amount of Dark Stars drops off almost
instantly. When considering lifetimes higher than ∼ 108years the declining population of dark
matter powered stars causes a residual emissivity at z < zmin and explains the shifted peak of the
cumulative signature as well as the higher contribution to the total background light flux (see in
Fig. 2(a) and in Fig. 2(b) the results for ∆tDS = 109years).

Considering the chosen parameter ranges (cf. table 1), peak contributions to the extragalactic
background light from 10−9 to roughly 70 nW m−2 sr−1 can be obtained. As Fig. 2 shows, the
wavelength of the maximum contribution to the diffuse radiation field is located roughly between
1−10µm. In this wavelength regime the extragalactic background light is measured between∼ 10
(lower limits) and ∼ 100 nW m−2 sr−1 (upper limits)1. This shows that the contributions from
Dark Stars can reach into the detectable range of the infrared background and thus can deliver
constraints for Dark Star parameters. Further work on the constraints delivered by contributions
from dark matter powered stars to the diffuse infrared background will be published in [23]. Future
efforts to measure the extragalactic background light via deep galaxy counts (e.g. with the James
Webb Space Telescope) and to derive refined upper limits (e.g. measurements of VHE γ-ray sources
with forthcoming Cherenkov telescopes like CTA) will improve the possibility to put constraints
on Dark Stars enormously.
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