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The dynamics of an axisymmetric stationary disk of accreting magnetofluid with finite conduc-
tivity around a rotating compact object is presented here. Along with Maxwell’s equations and
generalized Ohm’s law, the basic equations governing the motion of a finitely conducting plasma
in a curved space-time around a slowly rotating compact object are derived. The finite electrical
conductivity is taken into account for the plasma, however, the shear viscous stress is neglected
as well as the self-gravity of the disk. In this case, energy dissipation occurs only through the
finite resistivity. The magnetic stress takes the place of viscous stress in the standard disk model,
and extracts angular momentum from the disk. Indeed, angular momentum transfer is controlled
by the global structure of the magnetic field. The accreting plasma in the presence of an external
dipole magnetic field gives rise to a current in the azimuthal direction. The azimuthal current
produced due to the motion of the magnetofluid generates the magnetic field for the disk. Mag-
netic lines of force can penetrate the accretion disk owing to the presence of finite resistivity. It
has been shown that the dipolar magnetic field structure of the central black hole are modified
inside the disk. In fact, the magnetic field lines are pushed outward and are continuous across
the disk boundary. It has been demonstrated that the accretion with zero angular momentum and
radially falling at infinity acquires angular velocity entirely due to the inertial frame dragging as
it approaches the compact object and forms an equilibrium structure of thin disk on the equato-
rial plane of the central star. The inward flow passing through a sub-Alfvenic region becomes
super-Alfvenic to fall into the event horizon.
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1. Introduction

Accretion on to compact objects is a natural and powerful mechanism for producing high-
energy radiation. Since the process of angular momentum removal operates on slower timescales
as compared to free-fall time, the infalling gas with sufficiently high angular momentum can form
a disklike structure around a central gravitating body that could be thin or thick depending upon
their geometrical shapes. The basic equations governing the dynamics of an axisymmetric station-
ary magnetofluid disk around a compact object in curved space-time are given by Prasanna et al.
(1989). Here, we employ these equations in the space-time curved by a slowly rotating compact
object accreting matter from the surrounding non self-gravitating disk treated as a non shear vis-
cous plasma having finite conductivity and bulk viscosity. We have been pursuing the fully general
relativistic approach for studying the dynamics of the magnetospheric plasma around a slowly ro-
tating compact object through the analysis of fluid as well as the Maxwell’s equations, along with
the generalized Ohm’s law and an equation of state. Similar to our idea (magnetofluid disk in lin-
earized Kerr geometry) have been performed earlier by Bhaskaran et al. (1990), but the essential
difference in our calculations lies in the inclusion of finite conductivity and bulk viscosity, also the
non-zero radial inflow velocity for the fluids. Inclusion of a finite resistivity particularly is essential
for a disk in absence of shear viscosity to liberate gravitational energy. In studying the relativistic
magnetohydrodynamic fluid in the magnetosphere of a Kerr black hole, there speaks of two flows.
An inward flow due to the strong gravity and a centrifugally driven outward flow orinigate from
the plasma’s source with zero poloidal velocity (Takahashi et al. 1990). As mentioned in their
discussion, the magnetized flow has critical points at the fast and slow magnetosonic points and at
the Alfven point. They demonstrated that the MHD flows must become super-Alfvenic to fall into
the event horizon or reach infinity along the magnetic field lines.

2. Formalism

We are interested in the relativistic magnetized flows accreted from the source of plasma
around a Kerr black hole. In the following, we assume the stationary and axisymmetric magne-
tosphere (d, = d, = 0) and ignore its self-gravity. Rapidly rotating black hole is an assumption that
is usually employed for example in the jet outflows (Camenzind 1986; Takahashi et al. 1990; Koide
et al. 2006). However, in our discussions, assumption of slowly rotating black hole is sufficient.
Therefore, we will restrict our analyses to the linearised form of Kerr-metric given by

2 2m\ ! 4
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The motion of the plasma is governed by the equations of motion on the given background geom-
etry T’§ =0, where T/ is the energy-momentum tensor

g AN T T
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which consists of an imperfect fluid in absence of thermal conductivity with the mass density p,
the gas pressure p (it appears in the pressure variable p through p = p —n,®, wherein 1), being the
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bulk viscosity coefficient and ® = u’fk), the four-velocity u', and an electromagnetic field tensor F ij
satisfying Maxwell’s equations

Fi=—0 & Rt b6 =0 @3

The field tensor is defined as Eq = Fy; and By, = €, By FBY’ where €, By is the Levi-Civita symbol.
The finite conductivity ¢ is taken into account for the plasma through the generalized Ohm’s law
Ji = oFiu*. The Maxwell’s equations (Eqs. (2.3)) in the linearised Kerr metric (Eq. (2.1)), may
be written as
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In order to simplify the equations, the assumption of vanishing the toroidal component of the
electric field (E, = 0) for an axisymmetric fluid seems to be reasonable hypothesis. Also, if the
toroidal component of the magnetic field is presumed as B, = Sil% (l — @) 71, then the poloidal
current may be vanished (J" = J % — 0), where by is an arbitrary constant. Then, the Ohm’s law

yields (Er =B, VC—(” & Ey= —BrVT(p) , and the relations for the nonzero current components
1 2am 2m\ ' ve
JP=—0Bu | ———+—(1—— — 2.10
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By solving the azimuthal component of momentum equation, rotational velocity is obtained as
Ve = % This velocity is perfectly due to the inertial frame dragging induced by the space-time
surrounding the rotating compact object (Prasanna 1989). This is entirely the general relativistic
feature of space-time physics and indeed such solution doesn’t exist in Newtonian theory. Conse-
quently, the azimuthal velocity doesn’t find the Keplerian distribution in the limit of the classical
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case. Furthermore, once pressure provides substantial support in the radial direction, the angular
momentum distribution may be far from Keplerian. To appreciate the effects of rotation of the
central compact object on the disk dynamics, translate the equations into the frame as seen by the
locally non-rotating observer outside a rotating black hole (Bardeen et al. 1972)

d [, r 2m\ ~1/2 ,
- 7B,,] + — (1 - 7) 5 [sin68,,) | =0, 2.12)
d | By 1 om\ "' 9
-— 1—— — [sin6B, ,, | =0. 2.13
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One admissible solution set for the magnetic field given by the Eq. (2.12) is
o\ /2
B, =—B, * sin* 0 cos 6, & By =B, * <1 — —) sin®t1 g, (2.14)
r

The magnetic field is generally decomposed into two parts; the seed field BS caused by some
external sources and the disk field B? caused by the current flowing in the accretion disk B =
BS + BP. The external magnetic field BS is considered to be dipolar that fits for a modelling of
the accretion disks around compact stars in close binary systems. The central star is assumed to
be a black hole which can’t generate the magnetic field itself. But, the current streaming outside
the event horizon can make an external magnetic field around the black hole. Form of the dipole
magnetic field around a rotating black hole has been investigated by some authors (Prasanna 1978;
Prasanna & Vishveshwara 1978; Takahashi & Koyama 2009)
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wherein U is the dipole magnetic moment of the central star that may be expressed in terms of the
surface magnetic field By and the radius R of the central object as i1 = B;R°>.

2.1 Magnetic Field Configuration

To study the magnetic field configuration, we look at the magnetic field lines which satisfy the
ion dr — rdo _ rsin6de
relation B, =B, "B, ' . . .
the results in a Cartesian frame through the usual relations (X = rsin 6 cos ¢, Y = rsin 0 sin ¢ and

. In order to visualize the field line configuration, it is useful to express

Z = rcos 0). Applying these transformations, the dipolar configuration of the external magnetic
field at infinity

X=220 & Z=-9_cos0,

sin @’ sin? 6
and the disk magnetic field configuration
X =rycos(@,— P r(;(k“)cotﬂ), & Y =rysin(@,—p r()_(k+1)cot6), & Z=rycoth,
are achieved. Here, ¢, is a constant of integration and 8 = I;—q’. Since, we consider axisymmetric
1
solutions, we can set @, to zero without any loss of generality. Fig. 1 shows a typical profile of the

magnetic field structure in the meridional plane without (Fig. 1a) and with the disk field (Fig. 1b).
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Figure 1: Structure of magnetic field lines a) without the disk b) with the disk, for f = 0.

For the purpose of illustration, the meridional structure of the disk is presumed to extend to about
15° on either side of the equatorial plane. It is seen on comparison that, inside the disk, the field
lines are pushed outward as the parallel to the z axis. It is clear that the constant field lines of the
disk are connected with the lines of the external field at the surface of the disk and are continuous
at the boundary. If the plasma disk is considered to be infinitely conducting, any external magnetic
field can not penetrate the disk. However, as pointed out by Ghosh & Lamb (1978), magnetic lines
of force can penetrate the accretion disk owing to finite resistivity.

3. Possible equilibrium solutions

3.1 Special Case 6 =0

As the first step in way of solving the equations and investigating the system’s behavior, we
are interested in the special case of non-conducting plasma. In order to balance the number of
equations with the number of unknown variables (p, 5 and V")), it is necessary to include a state

equation. If we define a new variable for density as p = p — C%, we can consider the state equation
of constant density as p = p,, (in case p,, is constant). Applying the thin disk approximation (6 = 7
and V9 = 0), the radial component of motion equation and the continuity equation are simplified

respectively as

—1 2
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Integrating them yields

a2 2
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where n and p,, are the constants of integration. Then, the gas pressure is achieved as

p=p+n,0=(p—py)c*+n,0, (3.4)
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Figure 2: Profile of velocities as functions of radial distance in unit of mass of the black hole (r/m) with
6 =0, o =0.9, n=3x 10~*. The radial velocity (solid line) as well as the azimuthal velocity (dotted line)
measured in BLF.

wherein @ = uf‘k =u,+ %u’ . In this case, there are no electromagnetic fields, subsequently, no
magnetic stresses. In other words, in this case, there isn’t any angular momentum transport mech-
anism. Thus, these solutions are justified as the accretion flow in final stages once most of the gas
orbital angular momentum already has been removed in the sense that in those instants the fluids
almost pass directly into the central compact object (Ghanbari & Shaghaghian 2009). Close to the
black hole event horizon, the gas temperature and velocities become extremely high (Popham &
Gammie 1998) and gradually fall off outwards. As shown in Fig. 2, due to the condition of accre-
tion flow in last stages, the fluids’ radial inflow velocity is several times faster than its rotation. On

account of this reason, there exists a lower bound on parameter 7.

3.2 General Case 6 # 0

Since the solution of equations in presence of conductivity should get the previous ones (Egs.
(3.3)) in case o = 0, we presume the solutions as

a2 a2 (o m? | 4w
v — e m_(l_z_’"> “ _G_mf<1) e*i?(?*?*%), (3.5)
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where f and g are the unknown dimensionless functions. Consistency of Eq. (2.10) with the
Maxwell’s equation (Eq. (2.6)) leads us to an exact solution for the radial inflow velocity in LNRF

YA 2m\ ! e
V(’):c<l+(7> r2<1—7> ) ) (3.7)

Fig. 3a gives the profile of the poloidal velocity in comparison with the Alfven velocity for two

given by

values of 0. As expected, the radial inflow is sub-Alfvenic in the outer region, and after passing an
Alfven point (i.e. the point where the inflow velocity reaches the Alfven velocity), becomes super-
Alfvenic in the inner region. Because of this fact, there exists a lower bound on the density free
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Figure 3: Profiles of velocities. (a) The poloidal velocity and the Alfven velocity for two values of o
represented in legend. (b) (x x x) indicates the azimuthal velocity and the other lines are the radial velocity
(in BLF) for different values of ¢ represented in legend. The constant parameters are as follows: o =
09, n=1,k=1, p,=0.4x 10'kg/m> and B, = 108 T.

parameter p, below which the Alfven velocity becomes so fast in the sense that the accretion flow
becomes sub-Alfvenic in whole regions. The conductivity consideration gives rise to the presence
of the magnetic field in the governing equations. Therefore, in this case, the magnetic stresses play
the role of angular momentum transport mechanism. Accordingly, these solutions can be indicated
the accretion flow in the middle stages, once the radial and the azimuthal velocities of the plasma
are of the same order (Fig. 3b). Fig. 3b shows that in the outer regions, the fluids’ radial inflow
is done faster than its rotation. However, gradually toward the inner regions, the rotation becomes
faster than the inflow. As o becomes larger, both the radial inflow velocity and the Alfven velocity
slow down. The Alfven point becomes nearer to the inner boundary and the vastness of the super-
Alfvenic region reduces (Fig. 3a).
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