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Very rapid variations of the gamma-ray flux from blazars suggest that there is a mechanism at

work which modulates blazar emission on timescales much smaller than the light-crossing time

of the black hole’s event horizon. We propose a scenario in which blazar photons are modulated

at the frequencyω of a large-amplitude wave that is launched in the polar region of the central,

rotating black hole, and propagates in a charge-starved jet. Using a two-fluid (e±) description, we

find the outflow exhibits a delayed acceleration phase that starts when the inertia associated with

the wave currents becomes important. The modulation of the emission from the accelerating jet

is preserved for the observer provided that the density of pairs, produced in an electromagnetic

cascade, is sufficiently low.
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Charge-starved jets and rapid variability in blazars

1. Introduction

H.E.S.S. observations of PKS 2155-304 show remarkably rapid flux variations on a timescale
∼2−5 minutes [1, 6], which corresponds to a spatial structure that is roughly one hundred times
smaller than the gravitational radiusrg = GM/c2 of the central black hole. These small structures
modulate the entire energy flux reaching the observer, which suggests that they are located close
to, or even within, the black-hole magnetosphere. In our model [9] we associate them with the
wavelength 2πc/ω of a nonlinear electromagnetic wave that propagates radially in the jet direc-
tion, and, in fact, constitutes the jet itself. In an astrophysical context, nonlinear electromagnetic
waves were originally discussed in connection with pulsars [3], but the emphasis was placed on
modes with superluminal phase speeds that can propagate only in a very lowdensity plasma. The
mode we study here, on the other hand, has a subluminal phase speed, and propagates also in the
relatively dense environment that can be expected close to a pulsar or black hole [8]. Our treatment
is limited to radially propagating plane waves, i.e., we study the waves when they are already far
from the place where they were generated, and assume their lateral extent is large compared to
their wavelength. Close to the wave’s point of origin, its lateral extent is presumably comparable
to its wavelength, which not only rules out a plane wave description, but also the invalidates the
assumption of an axially symmetric jet. Thus, our model supposes that the waves are generated
by a generalised, non-axisymmetric form of the familiar axisymmetric Blandford-Znajek mecha-
nism [4]; one which causes the inhomogeneous magnetosphere of a rotating black hole to drive a
Poynting-flux-dominated jet. Some part of this jet will propagate in the low-density funnel that is
both expected on theoretical grounds [18] and observed in numerical simulations [5, 15]. Accret-
ing plasma cannot penetrate into this funnel. The matter density there is likely to bedominated by
electron-positron pairs that materialise within the magnetosphere, in a manner analogous to that
which operates in a pulsar magnetosphere.

2. Jet parameters

The physical conditions in a pair-dominated funnel-jet are determined by three dimensionless
parameters:

1. The energy flux density is measured by the strength parametera = a0(c/ωr), where

a0 =
[

4πe2L/
(

m2c5Ωs
)]1/2

(2.1)

with L the luminosity carried in a solid angleΩs. Physically,a is the conventionally defined
strength parameter of a circularly polarised vacuum electromagnetic wave that carries the
same energy flux density as the jet.

2. The mass-loading of the jet is defined byµ = L/Ṁc2 [16], with Ṁ the mass flux carried
by the jet, which is determined not by accretion, but by the production of pairs in an elec-
tromagnetic cascade. Alternatively, one can use the parameterκ, thepair multiplicity that
is conventionally used in pulsar physics, and specify it through its valueκrg at the fiducial
radiusrg:

κrg ≈
a0

4µ

(

c
ωrg

)

, (2.2)
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Charge-starved jets and rapid variability in blazars

(e.g., [14]).

3. The magnetisation parameterσ which describes the ratio of the energy flux carried by elec-
tromagnetic fields to that carried by particles. For a cold, radially flowing jet with Lorentz
factorγ,

σ = (µ/γ)−1 (2.3)

Such a flow is super-magnetosonic providedσ < σ0 = µ2/3.

3. The Model

As is well-known (e.g., [17]), a cold, collisionless plasma can be describedby the equations of
ideal MHD, provided waves of frequency comparable to or higher than the plasma frequency can
be neglected. In a relativistic, supersonic jet, this is widely thought to be the case. (In fact, although
a rigorous theoretical justification is absent, ideal MHD is also routinely applied to collisionless
flows that are warm and subsonic.) Such a plasma supports several low-frequency wave modes, in
which, because of the assumption of perfect conductivity, the currentis given simply by the curl of
the magnetic field, independent of the plasma speed and density.

For small amplitude waves in a sufficiently dense plasma this approximation workswell. How-
ever, since the outflow of a pair plasma in a funnel-jet may carry a large amplitude wave and rel-
atively few particles, i.e., can becharge-starvedin our terminology, the ideal MHD description of
the jet may not be adequate [11]. Therefore, we adopt an approach that allows us to take into ac-
count non-MHD effects connected with the finite inertia of the charge-carriers: the jet is described
as two cold, relativistice± fluids. For the low frequency waves we consider, this model can be sim-
plified even further. It suffices to introduce the number density and radial momentum which are the
same for each fluid:n+ = n− = n, p‖+

= p‖− = pr̂ , and the (complex) transverse or perpendicular
momenta, which are of opposite sign:p⊥+ = −p⊥− = pθ̂ + ipφ̂ . (These dimensionless quantities
are given in units ofmc.) This notation is particularly convenient when the fluids support a trans-
verse electromagnetic wave that is circularly polarized, with (complex) electric and magnetic fields
E = Eθ̂ + iEφ̂ andB = Bθ̂ + iBφ̂ . In the following we study the fate of a large-amplitude wave of
this kind that is launched from the polar regions of a black hole magnetosphere, and propagates
radially.

4. Subluminal waves

The equations to be solved are the continuity equations and the equations of motion for each
fluid, together with Faraday’s and Ampere’s laws. (For transverse fields and currents, and zero
charge-density, the other two Maxwell equations are automatically satisfied.)To study nonlinear
waves, we follow the approach introduced by [2]. For plane waves, thisentails expressing all quan-
tities in terms of a single phase variableφ . In order to follow the evolution of these waves over
large distances (compared to a wavelength) in spherical geometry, we introduce a radial coordinate
r, that varies slowly compared toφ , and expand in the small parameterε ∼ c/ωr ≪ 1 (short wave-
length approximation). In addition, all the equations are formulated in a Kerr metric, following
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[7], and expanded inε ∼ rg/r ≪ 1, i.e., assuming the gravitational radius is of the same order in
the small parameter as the wavelength. In the application to PKS 2155-304, thewavelength may
be one hundred times smaller thanrg ∼ c/ω , but this factor is not large compared to the value of
1/ε at the distances we consider (typically∼ 104 rg). It turns out that to first-order inε — which is
sufficient to determine the wave evolution — general relativistic effects drop out of the equations.

The WKB-like approach in which the solution is assumed to vary much faster in the phase
variable than in the radial variable, allows us to obtain the properties of a wave from the zeroth-
order equations, which also describe plane waves. These equations are: the continuity equation

ω
∂

∂φ
(n∆) = 0 , (4.1)

Faraday’s and Ampère’s laws:

−
ω
βw

∂E
∂φ

− iω
∂B
∂φ

= 0 (4.2)

−
ω
βw

∂B
∂φ

+ iω
∂E
∂φ

+ i8πenp⊥ = 0 , (4.3)

and the momentum/energy equations:

ω∆
∂ p‖
∂φ

+
e
m

Im(p⊥B∗) = 0 (4.4)

ω∆
∂ p⊥
∂φ

−
e
m

(

γE + ip‖B
)

= 0 (4.5)

ω∆
∂γ
∂φ

−
e
m

Re(p⊥E∗) = 0 , (4.6)

where∆ = γ − p‖/βw, γ =
√

1+ p‖2 + |p⊥|
2, andβw is the phase velocity of the wave.

These equations possess a subluminal solution (βw < 1) in which the wave is in resonance with
the fluids (∆ = 0). In the frame comoving with the wave, the electric field vanishes and the wave is
a static magnetic field of constant magnitude whose direction rotates through 2π radians over one
wavelength. At each point,p⊥, and, hence, the plasma current, is parallel to the magnetic field,
so that no force is exerted on the fluids. In fact, the rate at which theB-vector rotates is arbitrary,
being determined by the dependence of the fluid densityn on phase. We consider the simplest
case, wheren, |B|2 and |p⊥|

2 are all constant and the wave is a monochromatic magnetic shear:
B ∝ p⊥ ∝ e±iφ .

The slow, radial evolution of this plane-wave solution is described by the first-order equations.
In the standard manner we eliminate secular terms in the first-order quantities bydemanding their
periodicity inφ , and obtain three independent equations: the first order continuity equation

1
r2

∂
∂ r

(

r2np‖
)

= 0 . (4.7)

the conservation of the phase-averaged energy flux

∂
∂ r

[

r2

(

p‖nγ +
βw |B|2

8πm

)]

= 0 (4.8)
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and the momentum equation

∂
∂ r

[

r2

(

p‖
2n+

(

1+β 2
w

) |B|2

16πm

)]

= r |p⊥|
2n . (4.9)

(Note that the term on the RHS of (4.9) was erroneously omitted in [9].) The solution, which is
easily found numerically, reveals three phases: These are, as functions of the dimensionless radius
R= µrω/(a0c):

1. The coasting phase, whereR≪ µ/σ0. Here the inertia of current carriers is negligible and
the supersonic (σ0 < µ2/3), relativistic flow coasts at constant speed and magnetisation, and
can be described using single-fluid, ideal MHD

p⊥ ≪ 1 γ ≈ γw ≈ µ/σ0 (4.10)

2. The acceleration phase, whereµ/σ0 ≪ R≪ µ. Here, the inertia associated with current
contributes significantly to the energy-momentum flux

p⊥ ≈ 1 γ ≈ γw ≈ R, σ ≈ µ/R (4.11)

3. The free-streaming phase, whereR≫ µ. Here the electromagnetic fields are negligible and
the cold plasma streams outwards at constant speed.

γ ≈ γw ≈ µ, |p⊥| ≪ 1 (4.12)

This solution is illustrated in Fig. 1.
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Figure 1: The solution as a function of the dimensionless radiusR= µrω/(a0c), plotted forµ = 2.7×1011

andσ0 = 0.5µ2/3 = 2.1×107, together with the approximationγw = R
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5. Application to blazar variability

The blazar PKS 2155-304 exhibits substantial variations on a time scale of roughly 100s
and at a flux level that corresponds to an “isotropic” or “4π” luminosity (= 4πL/Ωs) of roughly
1046erg s−1. If the variation timescale in units of 100s is denoted by∆t100 = (2π/ω)/(100 s), and
the 4π-luminosity in units of 1046erg s−1 by L46, the jet parameters are

a0 = 3.4×1014L1/2
46 , ω = 0.06 s−1∆t−1

100 (5.1)

and, thus,

µ = 2.7×1011∆t100κ−1
rg

L1/2
46 M−1

9 . (5.2)

According to (4.12), the value ofµ equals the final Lorentz factor of the particles in the free-
streaming phase. Since, in blazars,µ is very large, we can expect that processes we have neglected
intervene well before this phase is reached. These processes might include inverse-Compton up-
scattering of ambient soft photons, interactions with the external medium, andinstabilities intrinsic
to the two-fluid system.

In the particular solution we consider here, the particles move radially in resonance with the
wave and their radiation should therefore be modulated at the wave frequency ω . The criterion
that the modulations at this frequency of the jet emission are not washed outby the variation of the
travel time of the signal across the source is

γ2
w 2πc/ω > r (5.3)

([10]). For this to be satisfied throughout the acceleration phase, it suffices that it is satisfied at the
point r = racc= a0c/(ωσ0), where this phase starts. This is becauseγw is constant forr < racc and
γw ∝ r for r > racc, so thatγ2

w/r has its minimum value atr = racc. Since

racc ≈ 1.2∆t1/3
100κ2/3

rg L1/6
46 M2/3

9 pc (5.4)

and the Lorentz factor of the flow at this point is

γ0 ≈ 6.5×103∆t1/3
100κ−1/3

rg L1/6
46 M−1/3

9 (5.5)

(5.3) gives an upper limit on the multiplicity:

κrg < 14∆t100L
1/8
46 M−1

9 (5.6)

If our interpretation is correct, this inequality implies that extreme variability can be exhibited
only by sources that do not develop prolific electromagnetic cascades. It is interesting to note that
the magnetospheres of such sources should be able to support vacuumgaps [13]. In this case,
in analogy with pulsar magnetospheres [12, 19], one can expect rapid variability to be generated
by non-stationary gap discharges. Thus, rapid variability is not only possible for charge-starved
sources, but it is also expected.
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6. Summary and conclusions

In this contribution, we study a particular, WKB-like solution of the non-linearequations that
describe the propagation of large-amplitude, transverse, circularly polarized waves in a low-density
pair plasma. Such a wave, when launched in the polar regions of a black-hole magnetosphere,
propagates along the jet in resonance with particles. The radial evolution of the wave exhibits a
delayed acceleration phase, which cannot be described within the ideal MHD approximation, since
it occurs where the inertia of the current becomes important. Although we have demonstrated the
existence of this phase for only one particular wave solution, the physics that underlies it suggests
that it may be a generic phenomenon. When the particles in the jet start to radiate, their emission
should be modulated at the wave frequency. We have shown that rapid modulations can be observed
only from magnetospheres that can sustain vacuum gaps, and, therefore, harbour a natural source
of the variations themselves.
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