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The motion of knots in astrophysical jets is commonly interpreted as shock waves moving along

it. Observations of the HST-1 knot during extended periods of time have produced complicated

light curves on many wavelengths which are difficult to account using standard hydrodynamical

models. Here we reproduce these light curves using the semi-analytical approach developed by

Mendoza et al. (2009), developed to reproduce light curves of working surfaces moving along

relativistic jets. These working surfaces are generated byperiodic oscillations of the injected flow

velocity and discharge at the base of the jet. In particular,we use this approach to reproduce

the exotic observed features of the light curves of the HST-1knot in M87. We show that the

complicated fits to the light curves are reproduced with highaccuracy in all wavelengths. As a

bonus, we show that this model is also able to reproduce the light curve of the micro-qsr A06200-

00 with high accuracy.
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1. Introduction

Chandra Observations of the HST-1 knot [1] in M87 showed thata peak in the X-ray light
curve developed about 2005. This light curve has since shownsuccessive peaks over short periods
of time. Observations in UV [2] and radio [3] have also shown the same trend. Since quasi-
periodic signatures in the brightening and dimming of the HST-1 knot X-ray observations were
found [4], this shows a manifestation of a previous modulation in the jet power, most probably a
local oscillation of the process that converts the bulk kinetic jet power to internal energy of the
emitting plasma.

The key to understand the particular features in the HST-1 knot of M87 is the physical basis
behind its light curve. To give an idea of the complexities observed, there has been a discussion
about the X-ray observations as to whether the main contribution in this wavelength is an effect
of the hot accretion disc with its corona [5] or a particular feature of some kind of recollimation
shock [6]. We mention here that radio observations show thatthe knot is well isolated from the
nucleus since the activity is displaced away from the central engine by& 120pc. Also, these radio
observations show superluminal motion of the knot, which means that its bulk velocity is highly
relativistic.

In this article we take multi-wavelength observations fromdifferent sources. For instance,
the X-rays observations are part of a multi-frequency program coordinating the Chandra and HST
monitoring by [4]. The ultraviolet data are part of the observations carried out during the years
1999 to 2006 [2]. Finally the radio data corresponds to observations with the VLBI at 2cm [3].
All these observations reveal a clear multi frequency lightcurve of the HST-1 knot which serves
as a laboratory to test the ideas developed by [7] for the formation and propagation of the working
surface of a relativistic jet, with periodic variations of the injected velocity profiles and mass rate
outflows.

2. Model

The formation of internal shock waves on a relativistic jet are commonly explained by different
mechanisms, such as the interaction of the jet with inhomogeneities of the surrounding medium,
the bending of jets and time fluctuations in the parameters ofthe ejection [8 – 10, 7]. Here we are
concerned with the latter. When the speed of the emitted massparticles varies with time, a faster
but later fluid parcel eventually hits an earlier but slower ejection producing an initial discontinuity
which gives rise to a working surface, i.e. a hydrodynamicalobject formed by two shock waves
separated by a contact surface. In the frame of reference of the central engine, where the jet is
being ejected, the working surface travels along the jet with an average velocityvws. (see e.g. [8]).
In what follows we use the relativistic semi-analytical model of [7] to describe a working surface
and its kinetic luminosity power travelling inside an astrophysical jet. To do this, we consider a
source ejecting material in a preferred directionx with a velocity v(τ) and a mass ejection rate
ṁ(τ), both dependent on timeτ as measured from the jet’s source [7]. The energy loss insidethe
working surface is calculated as the difference between theinitial energy of the material, when it
was injected at the base of the jet, and the energy of the flow inside the working surface. Assuming
an efficient mechanism which converts all this kinetic energy into radiation power, then the total
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luminosity is given byL := dEr/dt, whereEr = E0−Ews is the radiated energy within the working
surface [7].

In what follows we use the approach followed by [7] in order toshow that their model can
describe the important features observed on the evolution of HST−1. To do so, the injected veloc-
ity is assumed to have a periodic variation given byv(τ) = v0 + cη2sinωτ , with a constant mass
discharge ˙mand a velocity of lightc. We mention here that in order to perform the computations it
is best to numerically assume a dimensionless system of units for which the oscillating frequency
ω = 1 andṁ= 1. We have used this approach, which is also followed by [7], but we will present
our results on the physical system of units for whichω andṁare dimensional constants.

3. Numerical fits

The data sample of HST-1 covers a period of time between the years 2000 to 2009. Since we
are going to use observations on different wavelengths, then it is best to normalise all observations
to the intrinsic luminosity of HST-1. To do so, for X-rays we use the procedure developed in [1],
which gives a power law index for the flux of 1.5 at a wavelength of 2cm [3]. For the UV data we
use the flux density using the reference wavelength of the camera ACS/F220W at 2255.5AA [2].

Since the correction in flux is given, we can now use the standard relation between luminosity
and flux without worrying about extinction. To do so, we assume an isotropic emission of the
source at a distance of 16 Mpc [11], which gives a lower limit in the luminosity emitted by the
HST-1 knot.

On the other hand, the mean velocityv0 of the jet is taken asv0 = 0.98c which is in agreement
with the observed value of a Lorentz Factorγ = 6 [12]. The value of the parameterη2 and frequency
are selected by linear fits in light curve of the observed data.

The X-ray light curve does not work with a simple variation ofthe velocity and so, we addi-
tionally adopt a periodic variation on the injected mass given byṁ= ṁi + ψ sinΩ just for the first
flare. After the peak, the standard assumption made above fitsquite well the observations.

In all the observed light curves, there is at least one subsequent increase in luminosity after
the maximum peak. These local peaks can be easily modelled byassuming a rapid variation on the
value of the discharge ˙m injected in the jet according to the high variability of the core of M87 [4].

Figures 1-3 show the obtained fits, which are in good agreement with the observations. How-
ever, all of these take into account the bolometric luminosity of the flow. We have calculated in
Figure 4 the variation of the spectral index as a function of time to fit our model, with data obtained
by [1]. From the figure it follows that the X-ray luminosity isdominant at all times.

4. Discussion

We have described the light curve of the knot in HST-1 on different wavelengths using the
relativistic model of the evolution of working surfaces moving along a jet by [7]. The physical
mechanism responsible of the emission is still not known since, as described by [1], a simple
synchrotron emission can’t be accounted due to a break in themain burst.
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Figure 1: The figure shows as points the observed
light curve in X-Ray of HST-1 from [4]. The con-
tinuous curve on the plot is the best fit using the
semi-analytical model described in the text with a lin-
ear fit to the data yielding ˙m = 5.59× 10−7M⊙/yr
and ω = 0.1207. The second peak after the maxi-
mum is modelled as an increase in the discharge of
ṁ= 1.10×10−7M⊙/yr at time 2006.86 with a dura-
tion of 1.64 years.
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Figure 2: The figure shows the observed points of the
HST-1 UV light curve from [2]. The continuous curve
on the graph is the best fit to the observations using
the semi-analytical model described in the text with a
linear fit to the data yielding ˙m= 6.52×10−6M⊙/yr
andω = 0.02528. The second peak after the maxi-
mum is modelled as an increase in the discharge of
ṁ= 1.78×10−6M⊙/yr at time 2006.88 with a dura-
tion of 0.2 years.
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Figure 3: The figure shows the observed points of the
HST-1 radio light curve from the observations of [3].
The continuous curve on the figure is the best fit to
the observations using the semi-analytical model de-
scribed in the text with a linear fit to the data yielding
ṁ = 2.11× 10−11M⊙/yr and ω = 1.0. The second
peak after the maximum is modelled as an increase
in the discharge of ˙m = 3.48× 10−12M⊙/yr at time
2007.1 with a duration of 2.0 years.
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Figure 4: The figure show the timet evolution of the
spectral indexα. The upper and lower curves are the
spectral values from radio to UV (2cmto 225.5nm)
and from UV to X.rays (225.5nm to 2KeV) respec-
tively.
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Figure 5: The figure show a burst on the X-ray light curve of the microquasar A06200-00. The continuous
curve on the plot is the best fit using the semi-analytical model described in the text with a linear fit to the
data yieldingṁ= 3.27×10−17M⊙/yr andω = 1.0. The second peak after the maximum is modelled as an
increase in the discharge of ˙m= 7.2×10−14M⊙/yr at time 55 with a duration of 45 days.

To see the power of the semi-analytic model of [7], we also adopt the same procedure in
Figure 5 but for theµ-quasar A0620-00 which has been observed in detail for quitea nice period
of time.

Since the same model has been used to fit light curves of long gamma-ray bursts by [7], all this
means that light curves that produce bursts can be easily modelled by using this approach and that
certainly the burst are simply two shock waves forming due tothe variations of the injected flow.
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