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flux. The model provides a good fit to the hydrogen-ionizationrates inferred from flux decrement

measurements, predicts that cosmological HII regions overlap at redshift 7.5, and yields an optical

depth to Thomson scattering,τe = 0.085, that is agreement withWMAPresults.
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1. Introduction

The reionization of the all-pervading intergalactic medium (IGM) is a landmark event in the
history of cosmological structure formation. Studies of Gunn-Peterson absorption in the spectra of
distant quasars show that hydrogen is highly photoionized out to redshiftz> 6, while polarization
data from theWilkinson Microwave Anisotropy Probe (WMAP)constrain the redshift of a sudden
reionization event to be significantly higher,z= 11.0±1.4. It is generally thought that the IGM is
kept ionized by the integrated UV emission from active nuclei and star-forming galaxies, but the
relative contributions of these sources as a function of epoch are poorly known. In this contribution
we describe a new version of CUBA and use it to compute improved synthesis models of the UV/X-
ray cosmic background spectrum and evolution, combining, updating, and extending many of our
previous results in this field. Thorough details and all relevant references can be found in Haardt &
Madau (2011).

2. Cosmological radiative transfer

The equation of cosmological radiative transfer describing the time evolution of the space- and
angle-averaged monochromatic intensityJν is

(

∂
∂ t

−νH
∂

∂ν

)

Jν +3HJν =−cκνJν +
c

4π
εν , (2.1)

whereH(z) is the Hubble parameter,c the speed of the light,κν is the absorption coefficient, and
εν the proper volume emissivity. The integration of equation (2.1) gives the background intensity
at the observed frequencyνo, as seen by an observer at redshiftzo,

Jνo(zo) =
c

4π

∫ ∞

zo

|dt/dz|dz
(1+zo)

3

(1+z)3 εν(z)e
−τ̄ , (2.2)

whereν = νo(1+ z)/(1+ zo), |dt/dz| = H−1(1+ z)−1, τ̄ ≡ − ln〈e−τ〉 is the effective absorption
optical depth of a clumpy IGM, andεν is the proper volume emissivity.

2.1 Absorption

The effective opacity of the IGM has traditionally been one of the main uncertainties affecting
calculations of the UV background. Our improved model uses apiecewise power-law parameteri-
zation for the distribution of absorbers along the line of sight,

f (NHI,z) = AN−β
HI (1+z)γ , (2.3)

and is designed to reproduce accurately a number of recent observations.

• Over the column density range 1011<NHI < 1015 cm−2, we use(A,β ,γ)= (1.2×107,1.5,3.0),
where the normalizationA is expressed in units of cm−2(β−1), andβ = 1.5.

• At the other end of the column density distribution, with a power-law exponentβ = 2 down
to a break column ofNHI = 1021.55 cm−2, and with an incidence per unit redshift∝ (1+z)1.27,
the parameters for the DLAs becomes(A,β ,γ) = (8.7×1018,2,1.27).
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• For absorbers with 1019< NHI < 1020.3 cm−2 (the so-called “super Lyman-limit systems", or
SLLSs), we use(A,β ,γ) = (0.45,1.05,1.27).

• There is obviously a significant mismatch between the power-law exponent for the Lyα
clouds (γ = 3) and the SLLSs (γ = 1.27). Continuity then requires the shape off (NHI,z)
to change with redshift over the colum density range of the Lyman-limit systems (LLSs),
1017.5 < NHI < 1019 cm−2. In this interval of column densities we match the distribution
function with a power law of redshift-dependent slope. The procedure yields the slopes
β = 0.47,0.61,0.72,0.82 at redshiftsz= 2,3,4,5, respectively.

• The above parameterizations reproduce well the observations at 2< z< 5. At low redshift,
however,HSTdata show that the forest undergoes a much slower evolution.We takeγ = 0.16
in the interval 0< z< zlow anddN/dz= 34.7 at z= 0 above an equivalent width of 0.24
ÅẆe derive(A,β ,γ) = (1.73×108,1.5,0.16) for 1011 < NHI < 1015 cm−2 and(A,β ,γ) =
(5.49×1015,2,0.16) for 1015<NHI < 1017.5 cm−2 at all redshifts belowzlow = 1.56. We use
a broken power-law for the redshift distribution of the SLLSs and DLAs as well; assuming
that the sameγ = 0.16 slope and transition redshiftzlow inferred for the forest also hold
in the case of the thicker absorbers, we derive a normalization atz< zlow of A = 1.28 for
the SLLSs andA = 2.47× 1019 for the DLAs. This yieldsdN/dz= 0.74 absorbers above
NHI = 1017.2 cm−2 at 〈z〉= 0.69.

• Abovez= 5.5 we assume for the forest the values(A,β ,γ) = (29.5,1.5,9.9) (1011 < NHI <

1015 cm−2) and (A,β ,γ) = (9.35× 108,2,9.9) (1015 < NHI < 1017.5 cm−2) above redshift
5.5.

2.2 Emission

The emissivity is due to several contributing terms:

• The background photons absorbed through a Lyman series resonance cause a radiative cas-
cade that ultimately terminates either in a Lyα photon or in two-photon 2s→ 1s continuum
decay. We used the detailed photoionization structure of absorbing systems to calculate the
reprocessing of background LyC radiation by the clumpy IGM via atomic recombination
processes. We included recombinations from the continuum to the ground state of HI, HeI,
and HeII, as well as HeII Balmer, two-photon, and Lyα emission.

• The adopted quasar comoving emissivity at 1 Ryd,ε912(z)/(1+z)3,

ε912(z)
(1+z)3 = (1024.6 ergsMpc−3 s−1 Hz−1)(1+z)4.68 exp(−0.28z)

exp(1.77z)+26.3
, (2.4)

which closely fits the observational results in the range 1< z< 5.7 under the assumption
of pure luminosity evolution. The poorly known faint-end slope of the quasar luminosity
function at high redshift, incompleteness corrections, aswell as the uncertain spectral en-
ergy distribution (SED) in the UV, all contribute to the large apparent discrepancies between
different authors. In the following we shall use the functional form given above together
with the broken power-law SED withLν ∝ ν−0.44 for 1300< λ < 5000, andLν ∝ ν−1.57 for
λ < 1300.
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• Star-forming galaxies are expected to play a dominant role as sources of hydrogen-ionizing
radiation atz> 3 as the quasar population declines with lookback time. To compute the LyC
emissivity from galaxies at all epochs, we start with an empirical determination of the star
formation history of the universe. We adopt the far-UV (FUV,1500 Å) published luminosity
functions in the redshift range 0< z< 9, integrated down toLmin = 0.01L∗ using Schechter
function fits with parameters(φ∗,L∗,α) to compute the dust-reddened galaxy FUV luminos-
ity density ρFUV. Dust attenuation was treated using a Calzetti extinction law normalized
at 1500 Å. Finally, the dust-corrected luminosity densities were smoothed with an approxi-
mating function and then compared with the results of spectral population synthesis models
provided by the GALEXEV library.

3. Background Synthesis

Figure 1 shows the quasar-only background spectrum generated by an upgraded version of
our radiative transfer code CUBA, using the formalism and parameters described above. CUBA
solves the radiative transfer equation by iteration, as itsright-hand term implicitly containsJ in
the recombination emissivity and in the effective helium opacity. Physically, this simply means
that the metagalactic UV flux depends on the ionization stateof intervening absorbers, which is in
turn determined by background radiation. For comparison, we have also plotted the background
spectrum from our old models. The new models are characterized by a lower UV flux (by as much
as a factor of 3 at 1 Ryd andz= 3), smaller spectral breaks from HI and HeII LyC absorption,a
sawtooth modulation by the Lyman series of HI and HeII that becomes more and more substantial
with redshift.

Figure 2 shows the full background (i.e., quasar plus galaxies) compared to the quasar-only
spectrum. The much softer emissivity, linked to HI absorption fixed at the observed level, causes a
much deeper HeII absorption trough, and much deeper HeII Ly series absorption lines.

Figure 3 shows our predicted HI ionization rate compared to several measurements. The full
model provides a good fit to the hydrogen-ionization rates inferred from flux decrement measure-
ments, predicts that cosmological HII regions overlap at redshift 7.5, and yields an optical depth to
Thomson scattering,τe = 0.085, that is in agreement withWMAPresults.
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Figure 1: The cosmic background spectrum from quasars only between 5 Åand 5,000 Å at epochs
z= 0,1,3,and 5. The new models (black curves) are compared with the old results of Haardt & Madau
(1996)(red curves). The intensityJν is expressed in units of 10−22 ergscm−2s−1Hz−1sr−1.
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Figure 2: Same as above, but now thered line is the new quasar-only background, compared to the full
(quasars plus galaxies) modelblack line).
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Figure 3: Hydrogen photoionization rate as a function of redshift.Solid curve:our full model. Dashed
curves:separate contributions from quasars (leftmost curve) and galaxies (rightmost curve). Different data
points refer to various empirical measurements from the Lyα forest effective opacity (see Haardt & Madau
2011 for full references).
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