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Here we present the joint analysis of five dark energy models using the data from Type Ia Su-
pernovae (data from recent Union2 compilation), Cosmic Microwave Background (CMB) shift
parameter R (WMAP7 data), Baryon Acoustic Oscillation (BAO) and strongly gravitationally
lensed quasar-galaxy systems (combined data sets from SLACS and LSD surveys). These differ-
ent tests falls into two distinct classes. The first one makes use of the angular diameter distance,
and refers to the so called standard rulers. The second uses the luminosity distance and then
we deal with standard candles. The two distance concepts, although theoretically related to each
other, in practice have different systematic uncertainties and different parameter degeneracies.
Hence their joint analysis is more restrictive in the parameter space.

We have considered ACDM model, two Quintessence scenarios (with constant and variable equa-
tion of state), generalized Chaplygin gas and braneworld (Dvali, Gabadagdze, Porrati - DGP)
model. The best fits we obtained for the model parameters in joint analysis turned out to prefer
cases effectively equivalent to ACDM model. Our findings are in agreement with parallel studies
performed by other authors on different sets of diagnostic probes.

We also tried to answer question: "Which model is the best?" with the aid of two information-
theoretic criteria: the Akaike Criterion (AIC) and Bayesian Information Criterion(BIC). It lead
us to similar conclusion that the concordance model ACDM is clearly preferred in joint analysis.
The quintessence (both having constant or time varying equation of state), and Chaplygin gas get
considerably less support from the data while the brane world (DGP) scenario is practically ruled

out.
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Cosmic Equation of state from Strong Gravitational Lensing Systems

1. Introduction

Modern cosmology relies on quite firm observational ground. Its strength lies in consistency
across independent pieces of evidence (like e.g CMB anisotropies [9], the large-scale distribution
of galaxies [7], the observed abundances of light elements, etc.) rather than in single one, crucial
experiment. Concordance model with only few parameters fits most of the the current data quite
well. Currently accelerating expansion of the Universe (inferred from the SNIa Hubble diagram
[14]) is the most important open issue in modern cosmology and physics. Explanation of its origin
may be attributed to either unknown exotic material component with negative pressure - so called
dark energy, to infra red modification of gravity at cosmological scale or requires to relax the
assumption of homogeneity of the Universe.

We present the joint analysis of several dark energy models using four different kind of probes
coming from supernovae la data, CMBR shift parameter R, BAO and strong lensing systems. These
different tests, called diagnostics for short, have better constraining power when taken together than
one single probe. Presented results are extension of previous work [5], where we considered two
test coming from Snla and strong lensing systems. The method, concerning lenses, was proposed
by Biesiada [3] and also discussed in details by Grillo et al. [8].

Currently there exists strong evidence that the Universe is spatially flat. Combined analysis
of WMAPS, BAO and supernova data [9] gives £, = 1.00501’8:882(1). Hence we will assume flat
(k = 0) FRW model from now on.

2. Diagnostic probes

Strong gravitationally lensed systems create opportunity to test cosmological models of dark
energy in a way alternative to Hubble diagrams (from SNIa or GRBs). In cosmological context
the source is most often a quasar with a galaxy acting as the lens. Strong lensing reveals itself
as multiple images of the source. Their separations depend on angular-diameter distances to the
lens and to the source, which in turn are determined by background cosmology. This opens a
possibility to constraining the cosmological model provided that we have good knowledge of the
lens model. It turns out that in vast majority of cases lenses are type E/SO galaxies, which are found
to be structurally homologous and well characterized by approximately SIS (Singular Isothermal
Sphere) density profile. The formula for the Einstein radius in a SIS lens is following
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where Dy denotes(angular-diameter) distance between lens and source while D, - between observer
and source. Provided one has reliable knowledge about lensing system: the Einstein radius 6 and
lens velocity dispersion Os;g, one can use such well studied systems to test background cosmology.
We used a combined sample of n = 20 strong lensing systems from the SLACS [16] and LSD [15]
surveys, with good spectroscopic measurements of stellar central dispersions oy, which is taken as
a good estimator of og;s (for a detailed discussion see e.g. [8]).
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The central relation which splits into theoretical and observable counterparts reads:
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It is worth to notice that in the method used here models enter through a distance ratio which makes
the inferences independent on the Hubble constant value. Our findings depend, however, on the
reliability of lens modelling (e.g. SIS assumption).

Cosmological model parameters (coefficients in the equation of state) are estimated by mini-
mizing the chi-square function:
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where the sum is over the sample and Gél- denotes the variance of 2°%. In calculating 65 we
assumed that only velocity dispersion errors contribute and the Einstein radii are determined accu-
rately.

As a next probe we used the CMB shift parameter R, which is a scaled distance to the last
scattering surface (at redshift z;, = 1090) R(p) = v/Q, J5™ % [11], where Q,, is the present
day matter density, /(z) is dimensionless expansion rate which depends on cosmological model
(through parameters (p)). The most recent value from WMAP7 [10] is R = 1.725+0.018. For

comparison between theory and observations we will use the chi-square function:

[R(p) — 1.725)?
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i.e. just “one data point” for joint analysis.
We have also considered Baryon Acoustic Oscillations (BAO) distance measurements at red-
shift z = 0.35 in the form of A parameter (which is dimensional combination of so called di-
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is A(0.35) = 0.493+£0.017 [13]. The corresponding chi-square function reads:
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Those three probes described above falls into category of standard rulers. Dealing with these tests
we have to do with characteristic lengths like the size of sound horizon, the Einstein radius, the
preferred distance between galaxies (which is in fact statistical standard ruler).

The fourth probe, supernovae Ia falls into different category, namely standard candles. We
will use the data set of n = 557 supernovae given in [2] known as Union2 compilation. This data
set contains redshifts z; and distance moduli y; together with their errors ¢;. This leads to the
chi-square function:
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where p denotes distance modulus: u :=m — M = 5logio(Dr(z;p)) + 25 and Dy (z) luminosity
distance.
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The probes described above were combined by calculating joint likelihoods:
a%ot = Z’ul X czﬂcand = gCMB X gBAO X gLens X gSNla

which is equivalent to the assessment of the total chi-square function. Because standard rulers and
standard candles probe distance measures based on different concepts (angular diameter distance
and luminosity distance), one step before making a full joint fit we performed fits based on rulers
and candles separately.

3. Results

We have considered five cosmological scenarios widely discussed in current literature, namely
ACDM model, Quintessence with constant equation of state, Chevalier-Polarski-Linder model,
Generalized Chaplygin gas models and brane-world scenario [6]. By virtue of the Einstein equa-
tions, the expansion rate H = g is determined by some set of parameters like present expansion rate
Hj, present density of (pressureless) matter €2, radiation €, or any other material component €2,
(if considered) and the equation of state parameter w (assuming hydrodynamical energy momen-
tum tensor with p = wp relation) depending on particular tested model. We will use a shorthand
notation of p for such parameters. Their full specification is given in Table 1. Technically speaking,
testing cosmological models means to determine parameters p.

In flat ACDM cosmology, €, is the only free parameter. The result of our combined analy-
sis, i.e. Q,, = 0.274+£0.014 (see Table 3) should be compared with independent measurements.
The only method sensitive exclusively to matter density comes form studying peculiar velocities of
galaxies. For egzample Mohayaee and Tully [12] applied orbit retracing methods to motions in the
local supercluster and obtained €, = 0.22 +0.02, which is also consistent with our findings. In the
class of quintessence models, the ESSENCE supernova survey team [17] pinned down the equation
of state parameter to the range w = —1.07 +0.09(stat) + 0.12(systematics) and Q,, = 0.274 1333
(stat 10). These results are in perfect agreement with our results shown in Tables 2 and 3. Concern-
ing Chevalier - Polarski - Linder parametrization the joint constraint from WMAP+BAO+H)+SN
provided by [10] gives the bound wy = —0.93 +0.13 , w, = —0.41‘:8:;%. Our combined analysis
gives support to the models with varying equation of state very close to the ACDM model.

In the class of generalized Chaplygin gas models one can see that standard candles and stan-
dard rulers consistently support values of ¢ close to zero (and A ~ 1). This is in agreement with
previous, independent fits (e.g. [4] ) including the most recent ones [18]. We can say that our com-
bined analysis constrains the generalized Chaplygin gas scenario to cases effectively equivalent to
ACDM model.

Cosmological models in brane-world scenarios have been widely discussed in the literature.
Quite recent paper [19] presents one of the most comprehensive analysis of brane-world models
by considering jointly the data from supernovae, gamma-ray bursts, BAO, CMB peaks, the look
back times and growth functions for the large scale structure. Their results obtained by using the
Markov Chain Monte Carlo simulation yield Q,, = 0.2661’8:8%32 which perfectly agrees with our
results of joint analysis reported in Table 3.
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Model Cosmological expansion rate H(z) (the Hubble function)
ACDM H?(z) = Hg [Qn (1+2)° + Q4]
Quintessence HZ(Z) = Hg {_Qm (] +Z)3 +Qp (1 _~_Z)3(l+w)}

Chevalier-Polarski-Linder H?(z) = Hg [Qm (1+2)°+ Qo (1+ Z)3(1+wo+wa) exp( —]3321)
Chaplygin Gas H(z)* = Hj [Qm(l +2)* + Qe (AO +(1—-A4p)(1 +Z)3(Ha)) ”“}

Braneworld H(z)? = H} [( Qu(14+20°+Q, + Qn:)ﬂ

Table 1: Expansion rates H(z) in the models tested. The quantities £; represent fractions of critical density
currently contained in energy densities of respective components.

Cosmological model Best fit rulers % rulers Best fit candles x? candles
ACDM Q,=0273+0.018 x2=63.961 ,=0.275+0.020 x> =663.641
Quintessence Q,=0.262+0.035 x2>=63.829 ,=0.2994+0.075 x>=663.532
w=—1.0661+0.188 w=—1.070+0.215
Chevalier-Polarski-Linder  Q,, = 0.276 +0.055 )(2 =63.707 Q,,=0.228+0.156 X2 = 663.695
wo = —0.824+0.704 wo = —0.993 +0.207
we = —0.757+2.148 we =0.609+1.071
Chaplygin Gas Q,=0273+£0.018 x2=63.961 Q,=0.275+0.020 x>=663.641
A =1.0004+0.001 A =0.999 +0.004
o = —0.040+2.260 a =0.006+0.372
Braneworld Q,=0345+0.021 x2>=72.697 ,=0.177+£0.015 x>=664.276

Table 2: Fits to different cosmological models from: a) combined standard rulers data (R+BAO+Lenses) -
second and third column, b)from Union2 sample n = 557 SNIa - two last column.

ACDM Q,=0.274+0014 x>=727.610
Quintessence Q,, =0.274+0.014 xz =727.603
w = —1.004+£0.048
Chevalier-Polarski-Linder ~ Q,, =0.274+0.014 x> =727.584
wo = —0.9894+0.124
wg = —0.0821+0.621

Chaplygin Gas Q, =0274+0.014 x%=727.610
A=1.0+0.004
a=-0.112+1.282
Braneworld Q,=0.267+0.013 x*>=777.676

Table 3: Joint R+BAO+Lenses+Union?2 fits to different cosmological models.

4. Choose the best model

Minimizing the chi-square function is good approach for finding best fit parameters for a cer-
tain model. It is however insufficient for deciding whether the model itself is the best one (i.e
which one is the best supported by data at hand) because it does not take into account the relative
structural complexity of the models. This sort of questions can be answered with model selection
techniques. Here we have used two information-theoretic criteria: the Akaike Criterion (AIC) and
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Model AIC A w; Odds against
ACDM 729.610 0. 0.609 1.
Quintessence 731.603  1.993 0.225 3.
Chevalier-Polarski-Linder 733.584  3.974 0.084 7.
Chaplygin 733.610  4.00 0.082 7.
Braneworld 779.676  50.066 8.210712 7.1010

Table 4: AIC Model Selection Results.

Model BIC BICA; BIC w; BIC Odds against
ACDM 733.97 0. 0.957 1.
Quintessence 740.322  6.353 0.040 24.
Chevalier-Polarski-Linder 746.663 12.693 0.002 570.
Chaplygin 746.689 12.719 0.002 578.
Braneworld 784.036 50.066 1.3107!! 7.1010

Table 5: BIC Model Selection Results.

Bayesian Information Criterion (BIC) due to Schwarz.

Akaike criterion is based on Kullback-Leibler divergence I(f,g) between two distributions
f(x) and g(x), which says, roughly speaking, how much of the information is lost when g is used to
approximate f. As was shown by Akaike [1] the quantity, called the Akaike Information Criterion:

AIC = —2In(Z(p|data)) + 2K 4.1

is an approximately unbiased estimator of the K-L divergence between the model at hand g(x|p) and
an unknown true model f(x) which generated the data. In our case AIC = y?(p|data) +2K. Useful
informations can be inferred from Akaike differences A; := AIC; — AIC,,;, calculated over the whole
set of alternative candidate models i = 1,..., N where by AIC,,;, we denoted min{AIC;;i=1,...,N}.
Comparing several models, the one which minimizes AIC could be considered the best. Relative
likelihoods of the models .Z(g;|data) normalized to unity are called Akaike weights w; and give

us the posterior probability of a model. The odds against given model with respect to the best one
wi _ Z(gildata)

w; — ZL(gjldata)’

A very similar criterion is the so called Bayesian Information Criterion (BIC):

can be calculated as ratios of model pairs

BIC = —2In(Z (p|data)) + Kln(n) 4.2)

where 7 is sample size and as previously K denotes number of parameters. Its derivation stems
from estimating the marginal likelihood of the data.

5. Conclusions

In this paper we performed joint analysis of five cosmological models invoked to explain
accelerating expansion of the Universe. We used the data from strong gravitational lensing sys-
tems, CMB acoustic peak location and BAO data in combination with supernovae Ia data (Union2
compilation). The probes we used came both from standard rulers and standard candles. They
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invoke different (although theoretically related) concepts of a distance in cosmology, hence they
have different parameter degeneracies and different restrictive power in the parameter spaces of
cosmological models.

We used two information-theoretic methods to assess which model is the best supported by
data, namely AIC and BIC. Our main conclusion (see tables 4 and 5) is that the concordance model
ACDM is the preferred one and brane world scenario is practically irrelevant - both criteria give the
same result. The first criterion Akaike implies that the support given by the data to Quintessential
model even though less is comparable to the concordance model. Both models with a dynamical
equation of state w(z) Chevalier-Polarski-Linder (CPL parametrization) and Chaplygin gas scenar-
ios get considerably less (and similar to each other) support from the data, but with the evidence
against them assessed as moderate. According to the second criterion BIC we get much stronger
evidence against Quintessence with constant equation of state. The judgement of this criterion is
even stronger against models with dynamical equation of state, so that they are practically ruled out.
Odds against the brane-world scenario are so high that finally this scenario (DGP model) should be
abandoned according to both criteria.
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