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We formulate the set of self—consistent ground—state equilibrium equations for neutron star cores
taking into account quantum statistics, electro—weak, and strong interactions, within the frame-
work of general relativity. The strong interaction between nucleons is modeled through the sigma—
omega—-rho meson exchange in the context of the extended Walecka model, all duly expressed in
general relativity. We found the generalization to the works of Klein (1949), of Kodama and
Yamada (1972), and of Olson and Baylin (1975) by demonstrating that the thermodynamic equi-
librium condition of the constancy of the Fermi energy of each particle—specie can be properly
generalized to include the contribution of all fields. The consequences of these new conditions of
equilibrium on the structure of neutron stars are discussed.
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A general relativistic Thomas-Fermi treatment of neutron star cores

1. Introduction

In addition to the constancy of the temperature, thermodynamic equilibrium demands, in ab-
sence of any external field, the constancy of the particle chemical potential throughout the config-
uration. In presence of an external field, such a condition becomes [1] o+ U = constant, where
U denotes the external potential and i is the free—particle chemical potential. The extension of
these equilibrium conditions to the case of general relativity were obtained by O. Klein [2], who
investigated the thermodynamic equilibrium conditions of a self—gravitating one—component fluid
of non—interacting neutral particles in spherical symmetry. The generalization of the Klein’s equi-
librium conditions to the case of a multi—-component fluid of non—interacting neutral particles was
given by T. Kodama and M. Yamada [3]. E. Olson and M. Bailyn [4] went one step further obtain-
ing the equilibrium conditions for a self—gravitating multi—-component fluid of charged particles
taking into account the Coulomb interaction. Having in mind the case of neutron star interiors,
in this article we make a brief description of the generalization of the above works to include the
strong interaction for the hadronic species and the Coulomb interaction for the charged species
within a self—consistent general relativistic treatment. In particular, we assume neutron star cores
composed of interacting degenerate neutrons, protons and electrons in beta equilibrium. Thus,
we shall develop a general relativistic Thomas—Fermi treatment of neutron star cores within the
framework of quantum statistics and of the general relativistic field theory for the gravitational,
the electromagnetic and the hadronic fields. We consider the electromagnetic interaction between
electrons and protons and, for the hadronic interaction, we follow the so—called Walecka model
or quantum hadrodynamical model [5, 6], in which the strong interaction is modeled by meson—
exchange through the sigma, omega and rho meson—fields. We adopt units with # = c = 1. The
Latin indexes vary from 1 to 3, Greek indexes from O to 4.

2. General formulation
The total lagrangian density of the system is given by

where o is an isoscalar meson field, providing the attractive nuclear force, @ is the massive vector
field, modeling the repulsive short range nuclear force and p is the massive isovector field that takes
account of the surface effects of nuclei modeling a repulsive nuclear force [5, 6, 7, 8]. Therefore
the lagrangian densities for the free fields are
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where yy is the nucleon isospin doublet, y, is the electronic singlet, m; states for the mass of
each particle-specie and Qy = dy @y — Iy Oy, Zpy = IuPv — APy, Fuv = duAy — dyAy the field
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strengths for the @*, p and A* fields respectively. U(o) denotes the self interaction scalar field
potential, which is a quartic—order polynom for a renormalizable theory [9, 10, 11], and R is the
Ricci scalar. The interacting part of the lagrangian density is

Lt = —8sOWUNYN _gwwu-]g) —gpPuJ,ff —l—eAyJ;‘/fe - eAuJ;N, (2.3)

where the currents are J5 = Wy 7" Wy, J# = Uiy ., J{,fe =V, 7"y, and J;,fN = Uy (%) un
with a bar denoting usual Hermitian conjugation. The coupling constants of the o, @ and p-fields
are gq, 8o and g, and e is the fundamental electric charge. The Dirac matrices y* and the isospin
Pauli matrices satisfy the Dirac algebra in curved spacetime[12]. The energy—density & and the
pressure & of the fermion fluid are

- Y / e,d* : Y / —d3 (2.4)

lnpe lnpe

where & = \/k?+ (1i1;)? denotes the single—particle energy spectrum, for electrons 7, = m,, and
the nucleon effective mass is iy = my + gs0, and KLF denotes the Fermi momentum of each
particle specie. where y; = y/ (KF)2 + (1#1;)? and n; = (KF')? /(37?) are the free—chemical potential
and number density of the i—specie.

3. Generalized Fermi energies and beta equilibrium

The nucleon doublet and the electronic spinor written in the phase—space are y; = y;(k)e ~thut
From the Dirac equations we obtain the following equations (2" —m;)yi(k) = 0 with Z* =
kK —VH V, = —eV. Where V' = go0 +g,Tp" +e (HTB) A" is the effective four potential of
nucleons. Making a quadrature of the Dirac operators in the phase—space we obtain the Fermi
energy for electrons EX, neutrons EX and protons E 5

= VEooke — eV =", — eV, 3.1
= V800ln + 80 ® —8pp = "ty + go® —8&pP; (3.2)
Ef = \/300lp + 80 +gpp +eV =", + gow+gpp +eV. (3.3)

Consequently, the beta equilibrium condition E} = E[ + E.', becomes
Uy = Wy + e +2gppe /2. (34

Where we use the notation wy = @, po = p and A9 =V, a prime stands for radial derivative,

4. Constancy of the generalized Fermi energies

Using the equations of motion for the fields p, @ and o, the energy—momentum conservation
and the Egs. (2.4), the energy—momentum conservation equation can be rewritten as

Z nl-d(ev/zu,-) —i—gwnbd(o +gpn3dp +eng,dV =0, “4.1)

i=np.e
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where n., = (np —n,), and ny, n,, n, and n, are the baryon, proton, neutron and electron number
density.

Using the expressions (3.1)—(3.3) and the beta equilibrium condition (3.4), the Eq. (4.1) be-
comes

Y (ni+n.)dE] =0. (4.2)
i=p,e

It was demonstrated in the non interacting case[4] that from the minimization energy procedure it
follows the thermodynamic energy condition of constancy of the generalized particle Fermi energy
of all particle species. It can be seen from Eq. (4.2) that it is enough to request the constancy of the
generalized electron Fermi energy
EF = ¢"/?u, — eV = constant, 4.3)

e

to obtain the constancy of £ 5 and consequently, from beta equilibrium, the constancy of EF'[13, 14,
15, 16, 17]. Then, in addition to the electron equilibrium condition (4.3) we obtain for the nucleon
components

1+7
E,f_p = eV/Zuﬂ,P+“//,17p = constant, Doy =800+ 8pTP +e < . 3) v (4.4)

5. Conclusions

We have presented a self-consistent treatment of self—gravitating system of degenerate neu-
trons, protons and electrons in beta equilibrium within the framework of general relativity includ-
ing quantum statistics, electro—weak, and strong interactions. We obtained the generalized particle
Fermi energies from the Dirac equations for nucleons and electrons.

Then, we used the generalized Fermi energies to obtain the modified beta equilibrium condi-
tion for the particle species. Finally, we outlined how from the Einstein—-Maxwell-Dirac equations,
the electron equilibrium condition and the beta equilibrium condition, it follows the constancy of
the generalized particle Fermi energy of each particle specie including the contribution of all fields.
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