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The recent discovery of an explicit dynamical description ofp-branes makes it possible to investi-

gate the existence of intersection of such objects. We generalize those solutions depending on the

overall transverse space coordinates and time to those which depend also on the relative transverse

space and satisfy new intersection rules. We give classification of these dynamical intersecting

brane solutions involving two branes, and discuss the application of these solutions to cosmology

and show that these give Friedmann-Lemaitre-Robertson-Walker cosmological solutions.
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1. Introduction

The dynamics of the brane world model in five or six dimensions have been much explored
because of the possible cosmological and phenomenological interests. Although some results have
recently emerged on the applications of the solutions in higher-dimensional supergravity to the
brane world cosmology, e.g., in [1], the construction of the cosmological model in string theory
is much less extensive. One motivation for the present work is to improve this situation. For this
purpose, it is first necessary to construct dynamical brane solutions depending on the time as well
as space coordinates.

It has already been known [2, 3] that dynamical brane solutions arise when the gravity is
coupled not only to a single gauge field but also to several combinations of scalars and forms,
as generalization of the static intersecting brane solutions in the supergravity. Here we construct
dynamical brane solutions by generalizing these static solutions to a dynamical one. The first class
of dynamical solutions we study in this paper has the dependence on the time as well as overall
transverse space coordinates in the metric and obeys the well-known intersection rules. However,
it has also been known for some time that some static intersecting brane solutions may not follow
these intersection rules. These intersecting brane solutions are derived for the case when the branes
depend on the relative transverse directions of the intersecting branes.

Our goal is to exhaust and classify all two-intersecting-brane solutions which depend on the
time and (relative) transverse dimensions and to study their applications to the cosmological evo-
lutions, in particular in the ten-dimensional string theory and eleven-dimensional supergravity the-
ory. We first find cosmological solutions for possible intersections including the above exceptional
cases for two intersecting branes by extending the similar solutions obeying the usual intersection
rules [2, 3]. Our results on the dynamical branes are given for general cases of arbitrary dimensions
and forms, but in their applications to cosmology, we mainly focus on the dynamical branes in ten-
and eleven-dimensional supergravities because these are the most important low-energy effective
theories of superstrings.
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2. Intersecting brane solutions

We consider aD-dimensional theory composed of the metricgMN, dilatonφ, and the antisym-
metric tensor fields of rank(pr +2) and(ps+2):

S=
1

2κ2

Z [

R∗1−
1
2

dφ∧∗dφ−
1
2

eεr crφ

(pr +2)!
F(pr+2) ∧∗F(pr+2)−

1
2

eεscsφ

(ps+2)!
F(ps+2) ∧∗F(ps+2)

]

,

(2.1)

whereκ2 is theD-dimensional gravitational constant,∗ is the Hodge operator in theD-dimensional
spacetime,F(n) is ann-form field strength, andcI , εI (I = r, s) are constants given by

c2
I = 4−

2(pI +1)(D− pI −3)

D−2
, εI =

{

+ if pI −brane is electric
− if pI −brane is magnetic,

(2.2)

To solve these field equations, we assume that theD-dimensional metric takes the form

ds2 = hα
r hβ

s

[

h−1
r h−1

s qµν(X)dxµdxν +h−1
s γi j (Y1)dyidyj +h−1

r wmn(Y2)dvmdvn +uab(Z)dzadzb
]

,

(2.3)

whereqµν, γi j , wmn, anduab are the metrics depending only onxµ, yi , vm, andza coordinates of
dimensions(p+ 1), (ps− p), (pr − p), and(D + p− pr − ps−1), respectively. The parameters
α andβ in the metric (2.3) are given asα = (pr +1)(D−2)−1, β = (ps+1)(D−2)−1. Here we
suppose thatps(pr)-brane extends along X and Y1 (Y2) spaces.

TheD-dimensional metric (2.3) implies that thep-brane solutions are characterized by a func-
tion which depends on the coordinates transverse to the brane as well as the worldvolume coor-
dinate. For the configurations of two branes, we should sort the coordinates in three sets and the
powers of harmonic functions are different for each set of coordinates according to the intersection
rules. One set of the coordinates is the overall worldvolume coordinates, which are common to the
two branes. The others are overall transverse coordinates and the last are the relative transverse
coordinates, which are transverse to only one of the two branes.

The field equations of intersecting branes allow for the following three kinds of possibilities
on pr - andps-branes inD dimensions [4]:
(I)Bothhr andhs depend on the overall transverse coordinates:hr = hr (x,z), hs = hs(x,z).
(II)Only hs depends on the overall transverse coordinates, but the otherhr does on the correspond-
ing relative coordinates:hr = hr (x,y), hs = hs(x,z).
(III)Each ofhr and hs depends on the corresponding relative coordinates:hr = hr(x,y), hs =

hs(x,v).
In the following, we consider intersections where each participating brane corresponds to an

independent harmonic function in the solution and derive the dynamical intersecting brane solution
in D dimensions satisfying the above conditions.

For completeness, let us first consider case (I) though this has been already discussed in [3].
For this class, we assume that the scalar fieldφ and the gauge field strengths are given as

eφ = hεr cr/2
r hεscs/2

s , (2.4)

F(pr+2) = d
[

h−1
r (x,z)

]

∧Ω(X)∧Ω(Y2), F(ps+2) = d
[

h−1
s (x,z)

]

∧Ω(X)∧Ω(Y1), (2.5)
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whereΩ(X), Ω(Y1), andΩ(Y2) denote the volume forms of dimensions(p+ 1), (ps− p), and
(pr − p), respectively. Under the assumptions (2.3), (2.4), and (2.5), the field equations lead to [3]

Rµν(X) = 0, Ri j (Y1) = 0, Rmn(Y2) = 0, Rab(Z) = 0, (2.6)

hr = h0(x)+h1(z), hs = k0(x)+k1(z), (2.7)

DµDνh0 = 0, △Zh1 = 0, △Zhs = 0, for ∂µhs = 0, (2.8)

DµDνk0 = 0, △Zk1 = 0, △Zhr = 0, for ∂µhr = 0, (2.9)

whereDµ is the covariant derivative with respect to the metricqµν, and△Z is the Laplace operators
on the space of Z, andRµ(X), Ri j (Y1), Rmn(Y2), andRab(Z) are the Ricci tensors of the metrics,
qµν(X), γi j (Y1), wmn(Y2), anduab(Z), respectively, and we used the intersection ruleχ = 0 [3]

χ = p+1−
(pr +1) (ps+1)

D−2
+

1
2

εrεscrcs. (2.10)

If F(pr+2) = 0 andF(ps+2) = 0, the functionsh1 andk1 become trivial.
As a special example, let us consider the caseqµν = ηµν, γi j = δi j , wmn= δmn, uab = δab, where

ηµν is the(p+1)-dimensional Minkowski metric andδi j , δmn, δab are the(ps− p)-, (pr − p)-, and
(D+ p− pr − ps−1)-dimensional Euclidean metrics, respectively. For∂µhs = 0, the solution for
hr andhs can be obtained explicitly as

hr(x,z) = Aµxµ+B+∑
l

Ml

|zzz−zzzl |D+p−pr−ps−3 , hs(z) = C+∑
c

Mc

|zzz−zzzc|D+p−pr−ps−3 , (2.11)

whereAµ, B, C, Ml , andMc are constant parameters, andzzzl andzzzc are constant vectors representing
the positions of the branes. We can also choose the solution in which theps-brane part depends on
bothx andz.

Now we discuss the intersecting brane solutions in eleven-dimensional supergravity and in
ten-dimensional string theories. For the M-branes in eleven-dimensional supergravity, there is 4-
form field strength without dilaton, so the intersection ruleχ = 0 givesp = (pr +1)(ps+1)/9−1,

wherep denotes the number of overlapping dimensions of thepr andps branes. Then we get the
intersections involving the M2 and M5-branes [3]

M2∩M2 = 0, M2∩M5 = 1, M5∩M5 = 3. (2.12)

For the ten-dimensional string theories, the couplings to dilaton for the RR-charged D-branes
are given byεrcr = (3− pr )/2, εscs = (3− ps)/2 The conditionχ = 0 then givesp = (pr + ps−

4)/2. The intersections for the D-branes are thus given by

Dpr ∩Dps = (pr + ps)/2−2. (2.13)

We finally consider the intersections for NS-branes. The parameterscr for fundamental string
(F1) and solitonic 5-brane areε1c1 = −1 (for F1) andε5c5 = 1 (for NS5), respectively. Then the
intersections involving the F1 and NS5-branes are [3]

F1∩NS5= 1, NS5∩NS5= 3, F1∩Dp̄ = 0, Dp̄∩NS5= p̄−1, 1≤ p̄≤ 6. (2.14)
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There is no solution for the F1-F1 and D0-NS5 intersecting brane systems because the numbers of
space dimensions for each pairwise overlap are negative by the intersection rule.

We next consider case (II). We take the following ansatz for the scalar fieldφ and the gauge
field strengths:

eφ = hεr cr/2
r hεscs/2

s , (2.15)

F(pr+2) = d
[

h−1
r (x,y)

]

∧Ω(X)∧Ω(Y2), F(ps+2) = d
[

h−1
s (x,z)

]

∧Ω(X)∧Ω(Y1), (2.16)

whereΩ(X), Ω(Y1), andΩ(Y2) are the volume forms of dimensions(p+1), (ps−p), and(pr −p),
respectively. Since we use the same procedure as in case (I), we can derive the intersection rule
χ = 0 from the field equations. Forχ = 0, it is easy to show that the field equations reduce to

Rµν(X) = 0, Ri j (Y1) = 0, Rmn(Y2) = 0, Rab(Z) = 0, (2.17)

hr = h0(x)+h1(y), hs = hs(z), DµDνh0 = 0, △Y1h1 = 0, △Zhs = 0, ∂µhs = 0, (2.18)

where△Y1 is the Laplace operators on the space of Y1. If F(pr+2) 6= 0 andF(ps+2) 6= 0, the functions
h1 andk1 are nontrivial.

Let us consider the following case in more detail:qµν = ηµν, γi j = δi j , wmn = δmn, uab = δab,
whereηµν is the(p+1)-dimensional Minkowski metric andδi j , δmn, δab are the(ps−p)-, (pr −p)-
, and(D+ p− pr − ps−1)-dimensional Euclidean metrics, respectively. For∂µhs = 0, the solution
for hr andhs can be obtained explicitly as

hr(x,y) = Aµxµ+B+∑
l

Ml

|yyy−yyyl |
ps−p−2 , hs(z) = C+∑

c

Mc

|zzz−zzzc|D+p−pr−ps−3 , (2.19)

whereAµ, B, C, yyyl , zzzc, Ml , andMc are constant parameters.
One can easily get the solution for∂µhr = 0 and∂µhs 6= 0 if the roles of Y1 and Y2 are ex-

changed. Since the dynamical solution (2.19) obeys the same intersection ruleχ = 0, the inter-
sections of M-branes in eleven-dimensional supergravity and D-branes in ten-dimensional string
theories are given as (2.12), (2.13), and (2.14).

Finally, we consider case (III). We assume that the scalar fieldφ and the gauge field strengths
are given as

eφ = hεr cr/2
r hεscs/2

s , (2.20)

F(pr+2) = hsd
[

h−1
r (x,y)

]

∧Ω(X)∧Ω(Y2), F(ps+2) = hr d
[

h−1
s (x,v)

]

∧Ω(X)∧Ω(Y1), (2.21)

whereΩ(X), Ω(Y1), andΩ(Y2) denote the volume(p+ 1)-, (ps− p)-, and(pr − p)-forms, re-
spectively.

Under the assumption, the field equations give the intersection ruleχ = −2. This is different
from the usual rule applicable to the cases (I) and (II). Upon using the intersection ruleχ = −2, it
is easy to show that the field equations reduce to

Rµν(X) = 0, Ri j (Y1) = 0, Rmn(Y2) = 0, Rab(Z) = 0, (2.22)

hr = h0(x)+h1(y), hs = k0(x)+k1(v), (2.23)

DµDνh0 = 0, △Y1h1 = 0, △Y2hs = 0, for ∂µhs = 0, (2.24)

DµDνk0 = 0, △Y1hr = 0, △Y2k1 = 0, for ∂µhr = 0. (2.25)
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where△Y1 and△Y2 are the Laplace operators on the spaces of Y1 and Y2, respectively. The
functionsh1 andk1 are nontrivial forF(pr+2) 6= 0 andF(ps+2) 6= 0.

Now we consider the caseqµν = ηµν, γi j = δi j , wmn = δmn, uab = δab, whereηµν is the(p+1)-
dimensional Minkowski metric andδi j , δmn, δab are the(ps− p)-, (pr − p)-, and(D + p− pr −

ps−1)-dimensional Euclidean metrics, respectively. For∂µhs = 0, the solution forhr andhs can
be obtained explicitly as

hr (x,y) = Aµxµ+B+∑
l

Ml

|yyy−yyyl |
ps−p−2 , hs(v) = C+∑

c

Mc

|vvv−vvvc|pr−p−2 , (2.26)

whereAµ, B, C, yyyl , vvvc, Ml , andMc are constant parameters. We can also get the solution in which
the functionhs depends on bothx andv.

Let us consider the intersecting brane solutions in eleven-dimensional supergravity and in ten-
dimensional string theories. We first discuss the intersections of M-branes in eleven-dimensional
supergravity. The intersection ruleχ = −2 leads to

p =
(pr +1)(ps+1)

9
−3. (2.27)

Then we get the intersection involving the M5-brane M5∩M5 = 1. Equation Eq. (2.27) tells us that
the numbers of intersection for M2-M2 and M2-M5 branes are negative, which means that there is
no intersecting solution of these brane systems.

Next we consider the intersection in the ten-dimensional string theory. The couplings to dilaton
for the RR-charged D-branes areεrcr = (3− pr )/2, εscs = (3− ps)/2, and the conditionχ =

−2 is expressed asp = (pr + ps−8)/2. The intersections for the RR-charged D-branes are thus
given by Dpr ∩Dps = (pr + ps)/2−4. We finally consider the intersections for NS-branes. The
parameterscr for fundamental string (F1) and solitonic 5-brane areε1c1 = −1 for F1 andε5c5 = 1
for NS5, respectively. Then the intersection with F1-brane is forbidden by the intersection rule. The
intersections involving the NS5-branes are NS5∩NS5= 1, and D ¯p∩NS5= p̄−3, (3≤ p̄≤ 8).
There is no brane solution involving other intersections because the numbers of space dimensions
for each pairwise overlap become negative by the intersection rule.

We list the FLRW cosmological solutions with an isotropic and homogeneous three-space for
the solutions in [4] for M-branes, D-branes, F1 and NS5-branes. Since the time dependence in the
metric comes from only one brane in the intersections, the obtained expansion law is simple. In
order to find an expanding universe, one may have to compactify the vacuum bulk space as well as
the brane worldvolume. If we introduce the cosmic timeτ, we find that the fastest expanding case
in the Jordan frame has the powera ∝ τ7/15, which is too small to give a realistic expansion law
like that in the matter dominated era (a ∝ τ2/3) or that in the radiation dominated era (a ∝ τ1/2),
wherea is the scale factor of our Universe. When we compactify the extra dimensions and go
to the four-dimensional Einstein frame, the power exponents are different depending on how we
compactify the extra dimensions even within one solution. We give the power exponent of the
fastest expansion of our four-dimensional universe in the Einstein frame in [4]. We again see that
the expansion is too small. Hence, we have to conclude that in order to find a realistic expansion
of the universe in this type of models, one has to include additional “matter" fields on the brane.
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3. Discussions

We have derived intersecting dynamical brane solutions and discussed their dynamics in the
ten- and eleven-dimensional supergravity models. These solutions are obtained by replacing a
constantA in the warp factorh = A+ h1(y) of a supersymmetric solution by a functionh0(x) of
the coordinatesxµ [2, 3, 4, 5]. Our solutions can contain only one function depending on both time
as well as overall or relative transverse space coordinates. In particular, the solutions in case (II)
tell us that the brane which depends on overall transverse coordinate can be extended to the time
dependent case. It is possible to get the dynamical intersecting brane solutions which obey the
intersection ruleχ = −2 different from the usual one, as we have discussed in case (III).

We have used the intersection rules to find the cosmological solution because it is not so easy
to find it analytically without their rules. The intersection rules have led to the functionshr andhs

which can be written by linear combinations of terms depending on both coordinates of worldvol-
ume and transverse space. This feature is expected to be shared by a wide class of supersymmetric
solutions beyond the examples considered in the present paper, because the result has been obtained
by analyzing the general structure of solutions for warped compactification with field strength of
the ten- or eleven-dimensional supergravities under ansatz that is natural to include supersymmetric
solutions as a special case. We have showed that these solutions give a FLRW universe if we regard
the homogeneous and isotropic part of the brane worldvolumes as our spacetime. Unfortunately,
the power of the scale factor is so small that the solutions of field equations cannot give a realistic
expansion law. This means that we have to consider additional matter on the brane in order to get
a realistic expanding universe.

The solutions we have obtained may give some moduli instabilities because of the flat direction
of the moduli potential in the lower-dimensional effective theories after compactifications [1, 3, 6].
Such instability will grow unless the global or local minimum of the potential can be produced by
some correction in the effective theory.

The dynamical solutions contain only one function depending on both time and transverse
space coordinates. One possible reason for this is that the ansatz concerning the structure of the
D-dimensional metric is too restrictive. However, a recent study of similar systems shows that
it is possible to obtain solutions with each function depending on both time and transverse space
coordinates. It is interesting to examine if our solutions can be extended to more general solutions
by relaxing the assumptions of the field ansatz.
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