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On the Stability of Rotating Nuclear Matter Cores of Stellar Dimensions

1. Introduction

In [1], [2] a degenerate globally neutral system at nuclear density ofNn neutrons,Np protons
andNe electrons in beta equilibrium constrained to a constant density distribution forthe protons is
described using the relativistic Thomas-Fermi equation. Then the results have been extended from
heavy nuclei to the case of nuclear matter cores of stellar dimensions i.e. globally neutral systems
composed of degenerate neutrons, protons and electrons in beta equilibrium with a mass number
A ≈ 1057 at nuclear density kept together by gravity. Despite the global neutrality thecharge
distribution turned out to be different from zero inside and outside these cores and consequently
they exhibit an overcritical electric field near their surface. In [2] the stability against the Coulomb
repulsion of such configurations is shown within the Newtonian theory of gravity and a new island
of stability is found. In [3] the analysis to investigate the magnetic field induced by the charge
distribution of a nuclear matter core of stellar dimensions when the system is allowed to rotate as
a whole rigid body with constant angular velocity around the axis of symmetry has been presented
in the framework of classical electrodynamics. In particular it is shown fora rotating massive core
with a period of 10 milliseconds the existence of an overcritical magnetic field near its surface. In
the present work the special attention is given to the stability of such rotating nuclear matter cores
of stellar dimensions extending the results for stability given in [2].

2. The Relativistic Thomas-Fermi equation

It is well known that at mass densities larger than the "melting" density ofρm = 1.5·1014g/cm3,
all nuclei disappear (see [4]). This allows us to adopt in the description of nuclear matter in bulk
the three Fermi degenerate gases of neutrons, protons and electrons.Further

• we take the radius of the core proportional to the total numberNp of protonsRc =∆ [ℏ/mπc]N1/3
p

andnp =
1

3π2ℏ3 (PF
p )

3 =
3Np

4πR3
c
θ(Rc − r) (for details see [2]);

• we solve the Thomas-Fermi (T-F) equilibrium configuration assumingE
F

e = [(PF
e c)2+m2c4]1/2−

mc2− eV = 0;

• being the electron number density and the proton number density known, we determine the
number of neutrons by the beta equilibrium equation and we compute, on the basis of this
general principle, the relation between the proton numberNp and the mass numberA.

Using the Poisson equation and introducing the variablex = r/(ℏ/mπc), (xc = x(r = Rc)), we
obtain the relativistic T-F equation for extended nuclear matter (for details see [1]):

1
3x

d2χ(x)
dx2 =−α

{

1
∆3 θ(xc − x)− 4

9π

[

χ2(x)
x2 +2

m
mπ

χ
x

]3/2
}

, (2.1)

whereχ is a dimensionless function defined byχ/r = eV/cℏ andα is the fine structure constant.
The boundary conditions of the functionχ(x) areχ(0) = 0, χ(∞) = 0, Ne =

∫ ∞
0 4πr2ne(r)dr.

These equations together with the beta equilibrium, form a close set of non-linear boundary value
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Figure 1: The electron number in the unit of the
total proton numberNp, for selected values ofA,
as function of radial distance is shown in logarith-
mic scale. It is clear how by increasing the value
of A the penetration of electrons inside the core in-
creases (this figure is reproduced from [1]).

Figure 2: The normalized charge separation(np −
ne)/np is plotted as function of the dimensionless
radial coordinateξ . The maximum charge separa-
tion happens near the surface of the core where a
transition layer with an uncompensated charge is
located.

problem for a unique solution for the Coulomb potentialV and electron distributionne, as func-
tions of the parameter∆, i.e., the proton number-densitynp. A relevant quantity for exploring the
physical significance of the solution is given by the number of electrons within a given radiusr,
Ne(r) =

∫ r
0 4π(r′)2ne(r′)dr′. This allows to determine, for selected values of the mass numberA,

the distribution of the electrons within and outside the core and to follow the progressive penetra-
tion of the electrons in the core at increasing values ofA (see Fig.1). We can then evaluate the net
charge inside the coreNnet = Np −Ne(Rc) < Np, and consequently determine the electric field at
the core surface, as well as within and outside the core.

3. The ultra-relativistic analytic solutions

In the ultra-relativistic limit with the planar approximation the relativistic T-F equation admits
an analytic solution. Introducing the new functionφ defined byφ = 41/3(9π)−1/3∆χ/x and the
new variables ˆx = (12/π)1/6√α∆−1x, ξ = x̂− x̂c, where ˆxc = (12/π)1/6√α∆−1xc, then Eq. (2.1)
becomes

d2φ̂(ξ )
dξ 2 =−H(−ξ )+ φ̂(ξ )3, (3.1)

whereφ̂(ξ ) = φ(ξ + x̂c). The boundary conditions on̂φ are: φ̂(ξ )→ 1 asξ →−x̂c ≪ 0 (at the
nuclear matter core center) andφ̂(ξ ) → 0 asξ → ∞. The functionφ̂ and its first derivativeφ̂ ′

must be continuous at the surfaceξ = 0 of the nuclear matter core of stellar dimensions. Hence
equation (3.1) admits an exact solution

φ̂(ξ ) =











1−3
[

1+2−1/2sinh(a−
√

3ξ )
]−1 ξ < 0,√

2
(ξ +b)

, ξ > 0,
(3.2)

3



P
o
S
(
T
e
x
a
s
 
2
0
1
0
)
2
7
5

On the Stability of Rotating Nuclear Matter Cores of Stellar Dimensions

-10 -5 0 5 10
0

1

2

3

4

Ξ

e V

mΠ c 2

D=2.0

D=1.0

D=0.5

-2 0 2 4 6
0

5000

10 000

15 000

20 000

25 000

Ξ

E

Ec

D=2.0

D=1.0

D=0.5

Figure 3: The proton Coulomb potential energy
eV , in units of pion massmπ is plotted as a func-
tion of the radial coordinateξ = x̂− x̂c, for selected
values of the density parameter∆.

Figure 4: The electric field is plotted in units of
the critical fieldEc as a function of the radial coor-
dinateξ , showing a sharp peak at the core radius,
for selected values of∆.

where the integration constantsa andb have the valuesa= arccosh(9
√

3)≈ 3.439,b= (4/3)
√

2≈
1.886. The charge distribution inside and outside the core is defined by

ρ(ξ ) =











3e
4π

(

∆ℏ
mπ c

)−1
[

1− φ̂(ξ )3
]

, ξ < 0,

3e
4π

(

∆ℏ
mπc

)−1
[

−φ̂(ξ )3] , ξ > 0,
(3.3)

details are given in Fig. 2. The Coulomb potential and electric field functions interms ofφ̂(ξ )
given by

V (ξ ) =
(

9π
4

)1/3 mπc2

∆e
φ̂(ξ ), E(ξ ) =−

(

35π
4

)1/6 √α
∆2

m2
πc3

eℏ
φ̂ ′(ξ ) . (3.4)

Details are given in Figs. 3 and 4.

4. Rotating Nuclear Matter Cores of Stellar Dimensions in Classical
Electrodynamics

The magnetic field of a rotating spherically symmetric configuration along thez axis with
constant angular velocityω is defined byB(r) = Brer +Bθ eθ , where

Br =
2ω
c2

F
r

cosθ , Bθ =−2ω
c2

[

F
r
+

r
2

d
dr

(

F
r

)]

sinθ , (4.1)

F(r) =
1
r2

∫ r

0
r′2

d
dr′

[r′V (r′)]dr′. (4.2)

Br is the radial component andBθ is the angular component of the magnetic field,F(r) is the
superpotential,θ is the angle betweenr andz axis, andeθ is the unit vector alongθ (for details see
[3] and [5] ). Consequently, the expression for the magnitude (the absolute value) of the magnetic
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Figure 5: The radial component of the magnetic
field Br is plotted as a function of the radial coordi-
nateξ in units of the critical fieldBc = m2

ec3/eℏ≈
4.5× 1013 G. Here the period is taken to beP =

10 ms, θ = 0, ∆ = 1 and the radius of the core
Rc = 10km. Note thatBr is considered at the poles
of star, where it has maximum value. Outside the
starBr has very small negative value and it tends to
zero.

Figure 6: The angular component of the mag-
netic field Bθ is plotted in units of theBc. Here
P = 10 ms, θ = π/2, ∆ = 1 andRc = 10 km. Note
that Bθ is considered at the equator, where it has
maximum value. Inside the star it has very small
constant negative value. Outside the star first it be-
comes negative (the value is very small) then even-
tually it tends to zero.

field can be written as

B(r,θ) =
ωr
c2

√

√

√

√

(

2F
r2

)2

+

{

4F
r2

d
dr

(

F
r

)

+

[

d
dr

(

F
r

)]2
}

sin2 θ . (4.3)

Using the relation betweenr andξ , r = Rc +
( π

12

)1/6 ∆√
α

ℏ

mπ c ξ , one may estimate the value of the
magnetic field. Details are given in Figs. 5, 6,7,8 and 9. Examining the Fig. 5 onecan see very small
value ofBr which almost does not make a significant contribution to the magnitude of the field,
except for the poles of the star. On the contrary,Bθ has values exceeding the critical magnetic field
near the surface of the core although localized in a narrow region between positively and negatively
charged shells as expected (see Fig. 6). Outside the core the magnetic fieldbecomes negative with
very small magnitude. Fig. 7 shows spacial distribution of the magnetic field on the surface of
the nuclear matter core. According to the figure the magnetic field has its maximum value at the
equatorial plane and minimum at the poles. Fig. 8 represents magnetic lines of force inside, outside
and on the surface of the star. It turned out that the lines of force of theovercritical magnetic field
are appressed between two shells along the surface of the core. In Fig.9 the magnitude of the
magnetic field is presented as a function of the rotational periodP on the surface of the core at the
equator. Practically it demonstrates the upper limit of possible values of the magnetic field in the
range between 10ms and 100s.

5. The stability of rotating nuclear matter cores of stellar dimensions

In the work [2] the gravitational stability against the Coulomb repulsion of a nuclear matter
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Figure 7: The magnitude of the magnetic field
B(ξ = 0,θ) as given by (4.3) in the units of the
critical magnetic fieldBc is shown as a function
of the angular variableθ . It is seen from the pic-
ture that the magnetic field has its maximum at the
equatorial plane and minimum at the poles.

Figure 8: A schematic illustration of the mag-
netic lines of forces. Outside the star the magnetic
field looks like a dipole field. Extra lines (arrows)
along the surface of the star indicate an overcritical
value of the field between positively and negatively
charged shells.

core of stellar dimensions has been analyzed. In particular since in this system the gravitational
energy increases proportionally toA4/3 and the Coulomb energy increases proportionally toA2/3

the two cross at

Aω=0
R = 0.039

(

mPlanck

mn

)3(Np

A

)1/2

, (5.1)

wheremPlanck is the Planck mass andmn is the neutron mass. This establishes a lower limit for the
mass numberAR necessary for the existence of stable nuclear matter cores of stellar dimensions.

We consider now the analysis of the gravitational stability against the Coulomb repulsion of
a nuclear matter core of stellar dimensions when the system is allowed to rotate asa whole rigid
spherical object.

We know that the Coulomb energy, mainly distributed within a thin shell of widthδRc ≈
ℏ∆/(

√
αmπc) with a proton numberδNp ≈ 4πnpR2

cδRc at the surface, is given by

Eel≈0.15
3(3π)1/2

ℏc

4
√

α

(

∆ℏ
mπc

)−1(Np

A

)2/3

A2/3, (5.2)

while the magnetic energy evolving due to rotation is given by

Emag≈0.223
mπc2

∆
√

α

(

Np

A

)4/3

A4/3
(

∆ℏ
mπc

)2 ω2

c2 . (5.3)

and the rotational kinetic energy of that thin proton shell is given by

Erot≈
mnc2
√

α

(

Np

A

)4/3

A4/3
(

∆ℏ
mπc

)2 ω2

c2 . (5.4)

To ensure the stability of the system, the magnitude of the attractive gravitationalenergy of the thin
proton shell

Eg ≈ 3Gm2
n√

α

(

∆ℏ
mπc

)−1(Np

A

)1/3

A4/3, (5.5)
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Figure 9: The magnitude of the magnetic field is
plotted as a function of the period of the starP in
the units of the critical fieldBc at the surface of the
core on the equator in the logarithmic scale. Here
Rc = 10 km and∆ = 1.

Figure 10: Energies of the system in the units of
the gravitational energy of the thin shell plotted as
a function of the period of the starP for ∆= 1 in the
range between 1ms and 10ms in logarithmic scale.

must be larger than the repulsive Coulomb energy (5.2), the magnetic energy (5.3) and the repulsive
rotational energy (5.4). Indeed, it is shown in the Fig. 10 that for the periods more than 1ms, the
conditionEg > Eel +Emag +Erot is valid. This leads to

Aω 6=0
R ≈ Aω=0

R

[

1+

(

0.112+0.5∆
mn

mπ

)(

mPlanck

mn

)2 Np

A

(

∆ℏ
mπc

)2 ω2

c2

]

, (5.6)

which generalizes the relation given by Eq.(5.1). We can see that the correction term
(

0.112+0.5∆ mn
mπ

)(

mPlanck
mn

)2 Np

A

(

∆ℏ
mπ c

)2 ω2

c2 for the pulsars with the period more than 1ms is of the

order of 10−3, so in this case the system is stable.

6. Conclusions

In this paper we have investigated the stability of rotating nuclear matter cores of stellar dimen-
sions against the rotational kinetic energy and induced magnetic energy. In fact the whole system
is gravitationally bound and stable even for the 1ms period. But for the periods less than 1ms the
centrifugal repulsive forces will prevail over the gravitational force. In that case the system can no
longer be stable.

Since the electric field and the magnetic field are mainly concentrated in the very thin shell on
the surface, compared to the radius of the object, we have considered theenergies of the system only
in that region. The magnetic energy has the order of one tenth of the rotational energy irrespective
of the value of the period.

The results obtained in the work can have important consequences on the understanding of
physical processes in neutron stars as well as on the initial conditions leading to the formation of a
black hole.
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